
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Propositional Logic (part 2)

Proof Methods

2

Proof methods divide into (roughly) two kinds:
Model checking:
• Truth table enumeration (always exponential in n)
• Improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
• Backtracking with constraint propagation, backjumping
• Heuristic search in model space (sound but incomplete) e.g., min-conflicts, etc.

Theorem Proving/Deductive Systems: Application of inference rules
• Legitimate (sound) generation of new sentences from old
• Proof = a sequence of inference rule applications
• Typically requires translation of sentence into a normal form

Two sentences are logically equivalent iff true in the same models.
𝛼 ≡ 𝛽 iff a ⊨ 𝛽 and 𝛽 ⊨𝛼

Logical Equivalence

3

(𝛼 ∧ 𝛽) ≡ (𝛽 ∧ 𝛼) Commutativity of ∧
(𝛼 ∨ 𝛽) ≡ (𝛽 ∨ 𝛼) Commutativity of ∨
((𝛼 ∧ 𝛽) ∧ 𝛾) ≡ (𝛼 ∧ (𝛽 ∧ 𝛾)) Associativity of ∧
((𝛼 ∨ 𝛽) ∨ 𝛾) ≡ (𝛼 ∨ (𝛽 ∨ 𝛾)) Associativity of ∨
¬(¬𝛼) ≡ 𝛼 Double negation elimination
(𝛼⟹ 𝛽) ≡ (¬𝛽⟹ ¬𝛼) Contrapositive
(𝛼⟹ 𝛽) ≡ (¬𝛼 ∨ 𝛽) Implication elimination
(𝛼⇔ 𝛽) ≡ ((𝛼⟹ 𝛽) ∧ (𝛽⟹ 𝛼)) Biconditional elimination
¬(𝛼 ∧ 𝛽) ≡ (¬𝛼 ∨ ¬ 𝛽) de Morgan
¬(𝛼 ∨ 𝛽) ≡ (¬𝛼 ∧ ¬𝛽) de Morgan
(𝛼 ∧ (𝛽 ∨ 𝛾)) ≡ ((𝛼 ∧ 𝛽) ∨ (𝛼 ∧ 𝛾)) Distribution ∧ of over ∨
(𝛼 ∨ (𝛽 ∧ 𝛾)) ≡ ((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾)) Distribution ∨ of over ∧

Validity and Satisfiability

4

A sentence is valid if it is true in all models.
e.g., True, A ∨ ¬A, A ⟹ A, (A ∧ (A ⟹ B)) ⟹ B

Validity is connected to inference via the Deduction Theorem:
KB ⊨ 𝛼 iff (KB ⟹𝛼) is valid

A sentence is satisfiable if it is true in some model. e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no model. e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:
KB ⊨ 𝛼 iff (KB ∧ ¬𝛼) is unsatisfiable
i.e., prove 𝛼 by reduction ad absurdum (by contradiction)

Deductive Systems: Rules of Inference

5

Modus ponens or implication-elimination (form an implication and
the premise of the implication, you can infer the solution):

And-elimination (from a conjunction, you can infer any of the
conjuncts):

And-introduction (from a list of sentences, you can infer their
conjunction)

Double negation elimination:

Unit resolution (from a disjunction, if one of the disjuncts if false,
you can infer the other is true)

𝛼 ⟹ 𝛽, 𝛼
𝛽

𝛼! ∧ 𝛼" ∧ …∧ 𝛼#
𝛼$

𝛼!, 𝛼", … , 𝛼#
𝛼! ∧ 𝛼" ∧ …∧ 𝛼#

¬¬𝛼
𝛼

𝛼 ∨ 𝛽,¬𝛽
𝛼

Resolution: Since 𝛽 can not be true and false,
one of the other disjuncts must be true in
one of the premises.

𝛼 ∨ 𝛽,¬𝛽 ∨ 𝛾
𝛼 ∨ 𝛾

¬𝛼 ⟹ 𝛽, 𝛽 ⟹ 𝛾
¬𝛼 ⟹ 𝛾

Inference by Resolution

6

Conjunction Normal Form (CNF – universal)
Conjunction of disjunctions of literals
e.g. (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

Where ℓI and 𝓂j are complementary literals. e.g.

Resolution is sound and complete for
propositional logic

𝑃1,3 ∨ 𝑃2,2, ¬𝑃2,2
𝑃1,3

ℓ! ∨ ⋯∨ ℓ%, 𝓂! ∨ …∨𝓂#
ℓ! ∨ ⋯∨ ℓ$&! ∨ ℓ$'! ∨ … ℓ% ∨𝓂! ∨ …∨𝓂(&! ∨𝓂('! ∨ ⋯ ∨𝓂#

Conversion to CNF

7

B1,1 ⇔ (P1,2 ∨ P2,1)
1. Eliminate ⇔ replacing 𝛼⇔ 𝛽 with (𝛼⟹𝛽) ∧ (𝛽⟹𝛼)

2. Eliminate ⟹, replacing 𝛼⟹𝛽 with ¬𝛼 ∨ 𝛽

3. Move ¬ inwards using de Morgan’s rules and double negation.

4. Apply distributivity law and flatten

(B1,1 ⟹ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)) ⟹ B1,1

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

Resolution Algorithm

8

function PL-Resolution(KB, 𝛼) returns true/false
Input: KB, the knowledge base, a sentence in propositional logic

𝛼, the query, a sentence in propositional logic
clauses ← the set of clauses in the CNF representation of KB ∧ ¬𝛼
new ← {}
loop do

For each Ci, Cj in clauses do
resolvents ← PL-Resolve(Ci, Cj)
if resolvents contains the empty clause then return true
new ← new U resolvents

if new ⊆ clauses then return false
clauses ← clauses U new

Resolution Example

9

(B1,1 ⇔∨ P2,1)) ∧ ¬B1,1 ∧ ¬P1,2

Step 1) Convert this clause to CNF:

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1

𝛼 = ¬P1,2

Want to prove KB ^ ¬ 𝛼 is a contradiction. ((B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 ∧ P1,2

(B1,1 ⟹ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⟹ B1,1) ∧ ¬B1,1 ∧ ¬P1,2

(¬B1,1 ∨ (P1,2 ∨ P2,1)) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) ∧ ¬B1,1 ∧ ¬P1,2

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) ∧ ¬B1,1 ∧ ¬P1,2

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1)∧ (¬P2,1 ∨B1,1) ∧ ¬B1,1 ∧ ¬P1,2

Resolution Example

10

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1)∧ (¬P2,1 ∨B1,1) ∧ ¬B1,1 ∧ ¬P1,2

Completeness of resolution follows from the ground resolution theorem: If a set of
clauses S is unsatisfiable, then the resolution closure RC(S) of those clauses contains an
empty clause.

RC(S): set of all clauses derivable by repeated application of resolution rule to clauses in
S or their derivatives.

Definite Clauses and Horn Clauses

11

¬L1,1 ∨ B1,1 is a definite clause

Negate literals ¬A rewritten as (A ⟹ False) (integrity constraints)

P1,2 ∨ P1,2 is not a definite clause

Definite clause: disjunction of literals of which exactly one is positive.

Horn clause: disjunction of literals of which at most one is positive.
¬L1,1 ∨ B1,1 is a horn clause P1,2 ∨ P1,2 is not a horn clause

Inference with Horn clauses can be done through forward chaining and backward
chaining

These are more efficient than the resolution algorithm, runs in linear time

Inference by resolution is complete, but sometimes an overkill

Horn Form and Forwards/Backwards Chaining

12

Known as forward chaining inference rule; repeated applications until sentence of
interest obtained – forward chaining algorithm.

Modus Ponens: complete form Horn KBs

Horn Form (restricted) KB (= conjunction of Horn clauses)
e.g., C ∧ (B ⟹ A) ∧ (C ∧ D⟹ B)

𝛼!, … , 𝛼# 𝛼!∧ …∧ 𝛼# ⟹ 𝛽
𝛽

Modus Tollens: a form of Modus Ponens
¬𝛽, 𝛼!∧ …∧ 𝛼# ⟹ 𝛽

¬(𝛼!∧ …∧ 𝛼#)
Known as backward chaining inference rule, repeated applications until all premises
obtained – backward chaining algorithm.

Both algorithms run in linear time

Forward Chaining

13

Idea: add literals in KB to facts (satisfied premises)
apply each premise satisfied in KB (fire rules)
add rule’s conclusion as new fact/premise to the KB
(this is inference propagation via forward checking).
stop when query found as fact or no more inferences.

P ⟹ Q
L ∧ M ⟹ P
B ∧ L ⟹ M
A ∧ P ⟹ L
A ∧ B ⟹ L
A
B

Forward Chaining Example

14

Forward Chaining Example

15

Forward Chaining Example

16

Forward Chaining Example

17

Forward Chaining Example

18

Forward Chaining Example

19

Forward Chaining Example

20

Forward Chaining – Proof of Completeness

21

FC derives every atomic sentence that is entailed by KB.
1) FC reaches a fixed point where no new atomic sentences are derived.
2) Consider the final state as a model m, assigning true/false to symbols
3) Every clause in the original KB is true in m.
Proof: Suppose a clause a1 ∧ … ∧ ak ⟹ b is false in m.

We know that a1 ∧ … ∧ ak must be true, so b must be false. But that contradicts that we
have reached a fixed point. Hence:
4) m is a model of KB
5) KB ⊨ q, q is true in every mode of KB, including m

Backward Chaining

22

Idea: goal-driven reasoning – work backwards from the query q: to prove q by BC
• Check if q is known already or
• Prove by BC all premises of some rule concluding q

Comparing FC and BC
FC is data-driven, unconscious processing, e.g. object recognition, routine decisions.
May do LOTS of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving.
e.g. Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB, because only relevant facts
are touched.

Inference-based Agent in Wumpus World

23

A wumpus-world agent using propositional logic:

64 distinct proposition symbols, 155 sentences.

Propositional Logic Summary

24

Logical agents apply inference to a knowledge base to derive new information and make
decisions.

Propositional logic does not scale to environments of unbounded size, as it lacks
expressive power to deal concisely with time, space, and universal patterns of
relationships among objects.

Basic concepts of logic:
• Syntax: formal structure of sentences
• Semantics: truth of sentences wrt models
• Entailment: necessary truth of one sentence given another
• Inference: deriving sentences from other sentences
• Soundness: derivations produce only entailed sentences
• Completeness: derivations can produce all entailed sentences
Wumpus world requires the ability to represent partial and negated information, reason
by cases, etc.

