

Artificial Intelligence

Propositional Logic (part 2)
CS 444 - Spring 2021
Dr. Kevin Molloy
Department of Computer Science

Proof Methods

Proof methods divide into (roughly) two kinds:

Model checking:

- Truth table enumeration (always exponential in n)
- Improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
- Backtracking with constraint propagation, backjumping
- Heuristic search in model space (sound but incomplete) e.g., min-conflicts, etc.

Theorem Proving/Deductive Systems: Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
- Typically requires translation of sentence into a normal form

Logical Equivalence

Two sentences are logically equivalent iff true in the same models. $\alpha \equiv \beta$ iff a $\vDash \beta$ and β に α

$(\alpha \wedge \beta) \equiv(\beta \wedge \alpha)$	Commutativity of \wedge
$(\alpha \vee \beta) \equiv(\beta \vee \alpha)$	Commutativity of \vee
$((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma))$	Associativity of \wedge
$((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma))$	Associativity of \vee
$\neg(\neg \alpha) \equiv \alpha$	Double negation elimination
$(\alpha \Longrightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha)$	Contrapositive
$(\alpha \Longrightarrow \beta) \equiv(\neg \alpha \vee \beta)$	Implication elimination
$(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha))$	Biconditional elimination
$\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta)$	de Morgan
$\neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)$	de Morgan
$(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$	Distribution \wedge of over \vee
$(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$	Distribution \vee of over \wedge

Validity and Satisfiability

A sentence is valid if it is true in all models.

$$
\text { e.g., True, } A \vee \neg A, A \Longrightarrow A,(A \wedge(A \Longrightarrow B)) \Longrightarrow B
$$

Validity is connected to inference via the Deduction Theorem:
$\mathrm{KB} \vDash \alpha \mathrm{iff}(\mathrm{KB} \Longrightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model. e.g., A $\vee B$, C
A sentence is unsatisfiable if it is true in no model.
e.g., $A \wedge \neg A$
Satisfiability is connected to inference via the following:
$K B \vDash \alpha$ iff $(\mathrm{KB} \wedge \neg \alpha)$ is unsatisfiable
i.e., prove α by reduction ad absurdum (by contradiction)

Deductive Systems: Rules of Inference

Modus ponens or implication-elimination (form an implication and

$$
\frac{\alpha \Rightarrow \beta, \alpha}{\beta}
$$ the premise of the implication, you can infer the solution):

$$
\frac{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}
$$

$$
\frac{\neg \neg \alpha}{\alpha}
$$

$$
\frac{\alpha \vee \beta, \neg \beta}{\alpha}
$$

Resolution: Since β can not be true and false, one of the other disjuncts must be true in one of the premises.

$$
\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma, \neg \gamma \Rightarrow
$$

Inference by Resolution

Conjunction Normal Form (CNF - universal)
Conjunction of disjunctions of literals
e.g. $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Resolution inference rule (for CNF): complete for propositional logic
$\frac{\ell_{1} \vee \cdots \vee \ell_{k}, m_{1} \vee \ldots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \ldots \ell_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}$

Where ℓ_{1} and m_{j} are complementary literals. e.g.

Resolution is sound and complete for

$$
\frac{P_{1,3} \vee P_{22,} \neg P_{22}}{P_{1,3}}
$$ propositional logic

Conversion to CNF

$$
\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)
$$

1. Eliminate \Leftrightarrow replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$

$$
\left(B_{1,1} \Longrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right)\right) \Longrightarrow B_{1,1}
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double negation.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law and flatten

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution Algorithm

function PL-Resolution(KB, α) returns true/false
Input: $\quad K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $\mathrm{KB} \wedge \neg \alpha$ new $\leftarrow\}$
loop do
For each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \mathrm{PL}$-Resolve(Ci, Cj)
if resolvents contains the empty clause then return true new \leftarrow new U resolvents
if new \subseteq clauses then return false clauses \leftarrow clauses U new

Resolution Example

$K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1}$
$\alpha=\neg P_{1,2}$
Want to prove $K B^{\wedge} \neg \alpha$ is a contradiction. $\left(\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1} \wedge \mathrm{P}_{1,2}\right.$
Step 1) Convert this clause to CNF:

$$
\begin{aligned}
& \left.\left(B_{1,1} \Leftrightarrow \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2} \\
& \left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2} \\
& \left(\neg B_{1,1} \vee\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2} \\
& \left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2} \\
& \left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2}
\end{aligned}
$$

Resolution Example

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right) \wedge \neg B_{1,1} \wedge \neg P_{1,2}
$$

 clauses S is unsatisfiable, then the resolution closure $R C(S)$ of those clauses contains an empty clause.
$\mathrm{RC}(\mathrm{S})$: set of all clauses derivable by repeated application of resolution rule to clauses in S or their derivatives.

Definite Clauses and Horn Clauses

Inference by resolution is complete, but sometimes an overkill
Definite clause: disjunction of literals of which exactly one is positive.
$\neg L_{1,1} \vee B_{1,1}$ is a definite clause $\quad P_{1,2} \vee P_{1,2}$ is not a definite clause

Horn clause: disjunction of literals of which at most one is positive.
$\neg L_{1,1} \vee B_{1,1}$ is a horn clause $\quad P_{1,2} \vee P_{1,2}$ is not a horn clause

Negate literals $\neg \mathrm{A}$ rewritten as ($\mathrm{A} \Rightarrow$ False) (integrity constraints)
Inference with Horn clauses can be done through forward chaining and backward chaining

These are more efficient than the resolution algorithm, runs in linear time

Horn Form and Forwards/Backwards Chaining

Horn Form (restricted) KB (= conjunction of Horn clauses)
e.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$

Modus Ponens: complete form Horn KBs

Known as forward chaining inference rule; repeated applications until sentence of interest obtained - forward chaining algorithm.

Modus Tollens: a form of Modus Ponens

$$
\frac{\neg \beta, \quad \alpha_{1} \wedge \ldots \wedge \alpha_{n} \Rightarrow \beta}{\neg\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right)}
$$

Known as backward chaining inference rule, repeated applications until all premises obtained - backward chaining algorithm.

Both algorithms run in linear time

Forward Chaining

Idea: add literals in KB to facts (satisfied premises) apply each premise satisfied in KB (fire rules) add rule's conclusion as new fact/premise to the KB (this is inference propagation via forward checking). stop when query found as fact or no more inferences.

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L
\end{aligned}
$$

A

B

Forward Chaining Example

Forward Chaining - Proof of Completeness

FC derives every atomic sentence that is entailed by КВ.

1) FC reaches a fixed point where no new atomic sentences are derived.
2) Consider the final state as a model m, assigning true/false to symbols
3) Every clause in the original KB is true in m.

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m.

We know that $a_{1} \wedge \ldots \wedge a_{k}$ must be true, so b must be false. But that contradicts that we have reached a fixed point. Hence:
4) m is a model of $K B$
5) $K B \vDash q, q$ is true in every mode of $K B$, including m

Backward Chaining

Idea: goal-driven reasoning - work backwards from the query q : to prove q by BC

- Check if q is known already or
- Prove by BC all premises of some rule concluding q

Comparing FC and BC

FC is data-driven, unconscious processing, e.g. object recognition, routine decisions. May do LOTS of work that is irrelevant to the goal
$B C$ is goal-driven, appropriate for problem-solving. e.g. Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of $K B$, because only relevant facts are touched.

Inference-based Agent in Wumpus World

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1} \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& \neg W_{1,1} \vee \neg W_{1,2} \\
& \neg W_{1,1} \vee \neg W_{1,3}
\end{aligned}
$$

64 distinct proposition symbols, 155 sentences.

Propositional Logic Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions.
Basic concepts of logic:

- Syntax: formal structure of sentences
- Semantics: truth of sentences wrt models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
Propositional logic does not scale to environments of unbounded size, as it lacks expressive power to deal concisely with time, space, and universal patterns of relationships among objects.

