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• HW 6 due tonight.

• Quiz 3a will be published today after class and due before class next 
Tuesday.

• HW 7 will be release over the weekend and will focus on reinforcement 
learning.

• PA 3 is posted on the class website. 

Announcements
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Reinforcement Learning

Figure from Berkley AI

• We still assume an MDP:
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R, so must try out actions

• Big idea: Compute all averages over T using sample outcomes



The Story So Far: MDPs and RL

Figure from Berkley AI

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning



Model-Free Learning

Figure from Berkley AI

• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman updates
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Q-Learning

Figure from Berkley AI

• We’d like to do Q-value updates to each Q-state:

• But can’t compute this update without knowing T, R

• Instead, compute average as we go
• Receive a sample transition (s,a,r,s’)
• This sample suggests

• But we want to average over results from (s,a)  (Why?)
• So keep a running average



Q-Learning Properties

Figure from Berkley AI

• Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]



Example: Q-Learning Auto Cliff Grid

Figure from Berkley AI



Exploration vs. Exploitation

Figure from Berkley AI



How to Explore?

Figure from Berkley AI

• Several schemes for forcing exploration
• Simplest: random actions (e-greedy)

• Every time step, flip a coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around 

once learning is done
• One solution: lower e over time
• Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Demo Q-Learning – Manual Exploration – Bridge Grid

Figure from Berkley AI



Q-Learning – Epsilon Greedy - Crawler

Figure from Berkley AI



Exploration Functions

Figure from Berkley AI

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

• Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Example: Learning to Walk

Figure from Berkley AI



Regrets

Figure from Berkley AI

• Even if you learn the optimal policy, you still 
make mistakes along the way!

• Regret is a measure of your total mistake 
cost: the difference between your (expected) 
rewards, including youthful suboptimality, 
and optimal (expected) rewards

• Minimizing regret goes beyond learning to 
be optimal – it requires optimally learning to 
be optimal

• Example: random exploration and 
exploration functions both end up optimal, 
but random exploration has higher regret



Approximate Q-Learning

Figure from Berkley AI



Generalizing Across States

Figure from Berkley AI

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about 
every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from 

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll 

see it over and over again

[demo – RL pacman]



Example: Pacman

Figure from Berkley AI

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Q-Learning Pacman – Tiny – Watch All

Figure from Berkley AI



Q-Learning Pacman – Tiny – Silent Train

Figure from Berkley AI



Q-Learning Pacman – Tricky – Watch All

Figure from Berkley AI



Feature-Based Representations

Figure from Berkley AI

• Solution: describe a state using a vector of features 
(properties)
• Features are functions from states to real numbers (often 

0/1) that capture important properties of the state
• Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. action 
moves closer to food)



Linear Value Functions

Figure from Berkley AI

• Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

Figure from Berkley AI

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

Figure from Berkley AI

[Demo: approximate Q-
learning pacman (L11D10)]



Video: Approximate Q-Learning Pacman

Figure from Berkley AI



Q-Learning and Least Squares

Figure from Berkley AI



Linear Approximation: Regression*

Figure from Berkley AI
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Optimization: Least Squares *

Figure from Berkley AI
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Minimizing Error*

Figure from Berkley AI

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”



Overfitting: Why Limiting Capacity Can Help*

Figure from Berkley AI



Policy Search

Figure from Berkley AI

• Problem: often the feature-based policies that work well (win games, maximize utilities) 
aren’t the ones that approximate V / Q best
• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

Figure from Berkley AI

• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely, change multiple 
parameters…



Helicopter Flying

Video from Andrew Ng



Conclusion

Figure from Berkley AI

• We’re done with Part I: Search and Planning!

• We’ve seen how AI methods can solve 
problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

• Next up: Part II: Reasoning with Logic!


