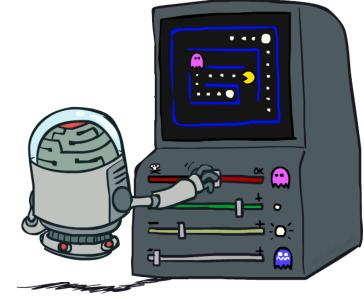


Artificial Intelligence



Reinforcement Learning (Part 2)

CS 444 – Spring 2021

Dr. Kevin Molloy

Department of Computer Science

James Madison University

Much of this lecture is taken from Dan Klein and Pieter Abbeel AI class at UC Berkeley

Announcements

- HW 6 due tonight.
- Quiz 3a will be published today after class and due **before** class next Tuesday.
- HW 7 will be release over the weekend and will focus on reinforcement learning.
- PA 3 is posted on the class website.

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Compute V*, Q*, π^*

Evaluate a fixed policy $\boldsymbol{\pi}$

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

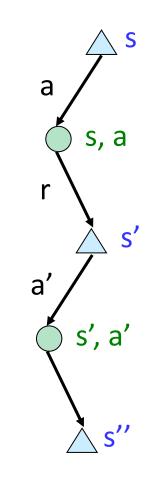
Goal	Technique
Compute V*, Q*, π^*	Q-learning
Evaluate a fixed policy π	Value Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates



Q-Learning

- We'd like to do Q-value updates to each Q-state: $Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$
 - But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

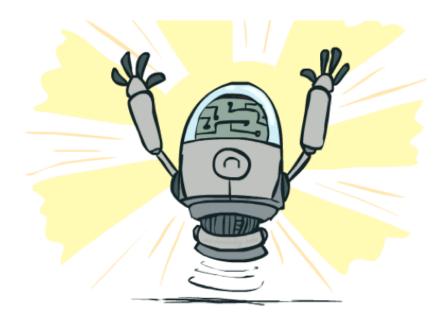
$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'}Q(s',a')\right]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)



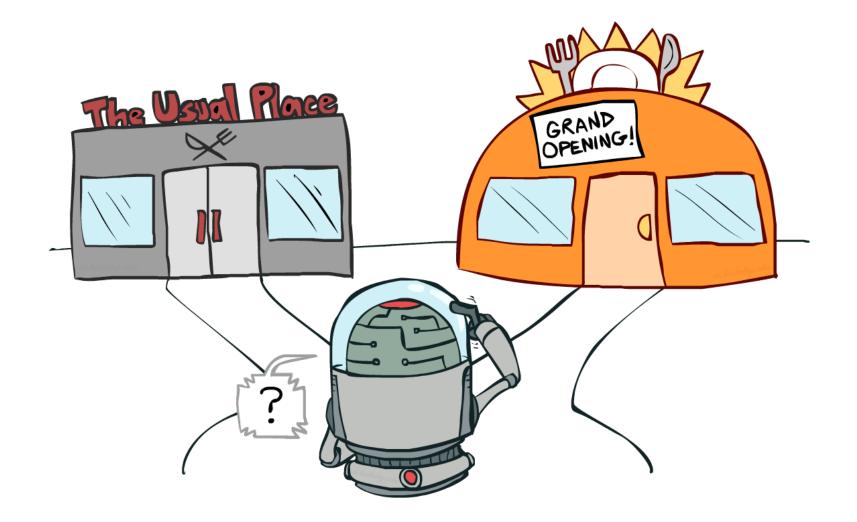
[Demo: Q-learning – auto – cliff grid (L11D1)]

Figure from Berkley AI

Example: Q-Learning Auto Cliff Grid

dit <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp	
	🗈 🛃 Pydev 🔮 T
Console 🛛	= ¥ 🔆 🖬 🖓 🗐 🖓 🗰 = - 🗎
terminated> -0.0	
PISODE 10 COMPLETE: RETURN WAS -100.0	
EGINNING EPISODE: 11	

Exploration vs. Exploitation



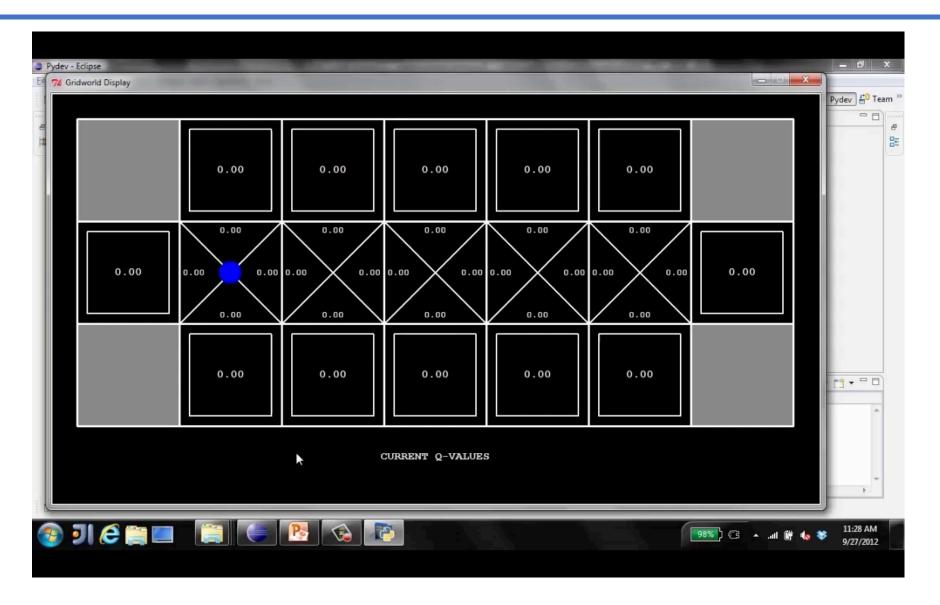
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ , act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower $\boldsymbol{\epsilon}$ over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Figure from Berkley AI

Demo Q-Learning – Manual Exploration – Bridge Grid



Q-Learning – Epsilon Greedy - Crawler

🛃 Ap			_			_			
	Run	Skip 1000000 step	Stop	Skip 30000 steps	Reset speed counter	Reset Q		🖺 🛃 Pydev 🛱 Team	>>
	average speed :-1.0	671648197531216							****
									8
		6							
		`							
	eps			am- 0.9 gan	n++ alpha- 1				
	eps-	0.8 eps++	g	am- 0.9 gan	aipna-	0 alpha+	·	J	
0	Console 23							■ × ¾ ≩ ₽ ₽ • • • • • • • • • • • • • • • • •	
В	otQLearning [Java App	lication] C:\Program Fil	es (x86)\	Java\jre7\bin\javaw.ex	xe (Sep 27, 2012 11:31:20 AM)				
								A	
								*	
								4	
		-						11:31 AM	
~)) (e 📄			- 🛃 🔹	و الخ			98%) C3 🔺til 🛱 🍬 😻 11:31 AM 9/27/2012	
									Ē

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

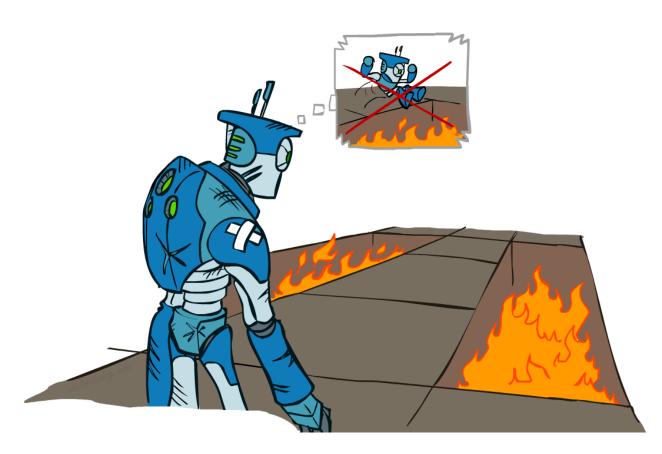
• Note: this propagates the "bonus" back to states that lead to unknown states as well!

Example: Learning to Walk

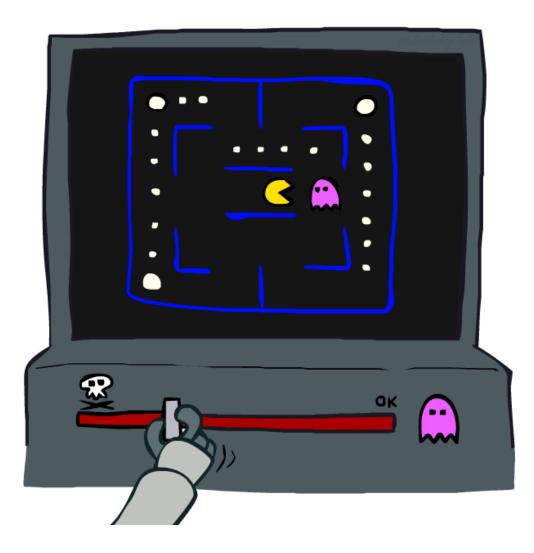
VApplet clipse	
Run Skip 1000000 step Stop Skip 30000 steps Reset speed counter average speed : 3.3348581034694122 eps- 0.1 eps++ gam- 0.9 gam++ alpha 1.0	Reset Q E Pydev #9 Team »
Console BotQLearningEXP [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:36:12 AM)	
🚱 JI 😂 🚔 🔲 📋 🔄 🔛	98%) C 🔺 🔐 🛱 🍫 11:36 AM 9/27/2012

Regrets

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret



Approximate Q-Learning



Generalizing Across States

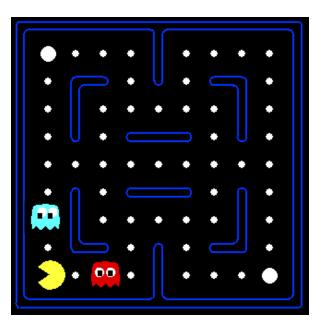
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



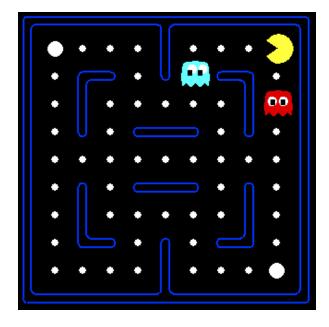
Figure from Berkley Alman]

Example: Pacman

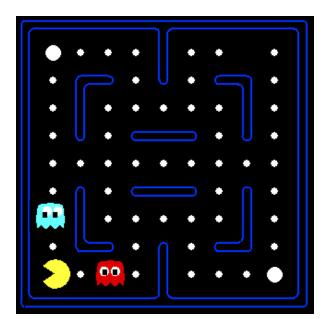
Let's say we discover through experience that this state is bad:



In naïve q-learning, we know nothing about this state:

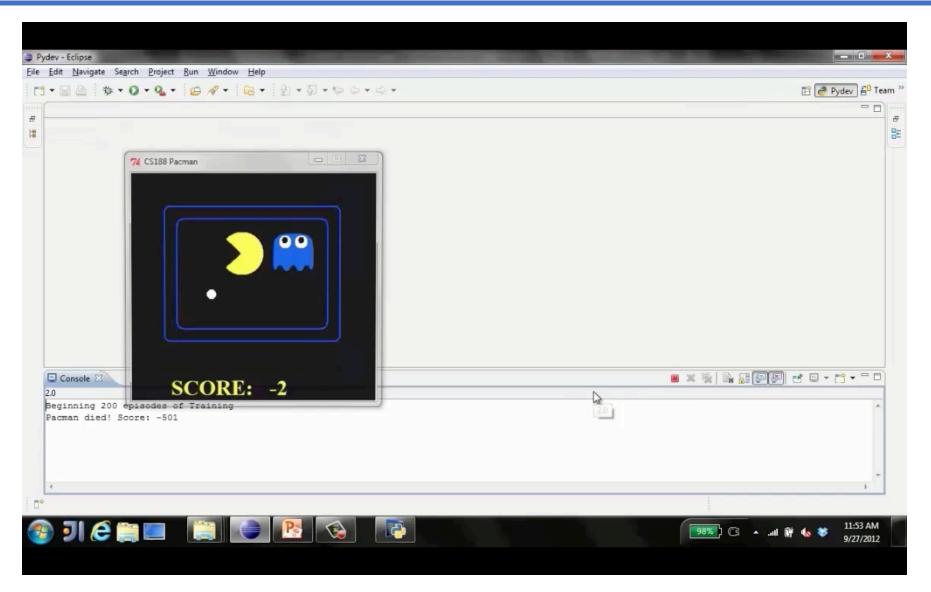


Or even this one!

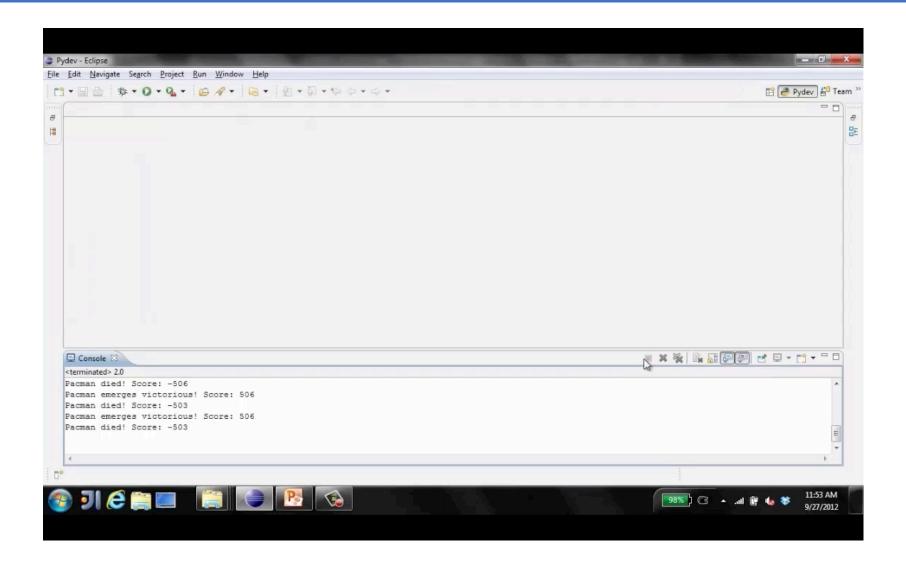


[Demo: Q-learning – pacman – tiny – watch all (L11D5)] [Demo: Q-learning – pacman – tiny – silent train (L11D6)] [Demo: Q-learning – pacman – tricky ^{Eig} WaftCh ^Balk^I(化作D7)]

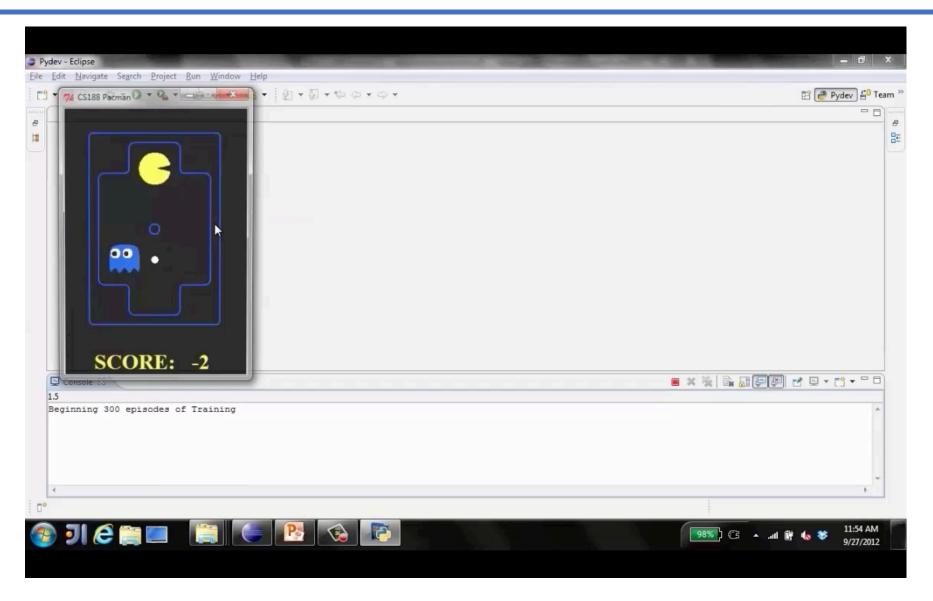
Q-Learning Pacman – Tiny – Watch All



Q-Learning Pacman – Tiny – Silent Train

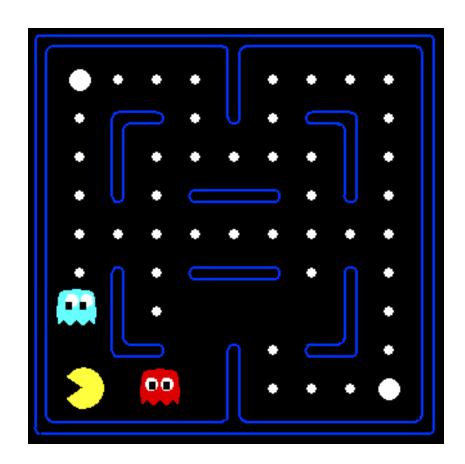


Q-Learning Pacman – Tricky – Watch All



Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

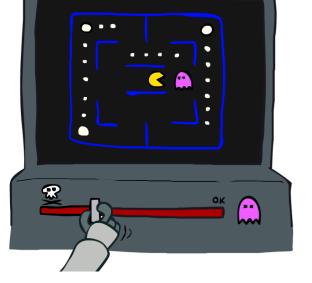
Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

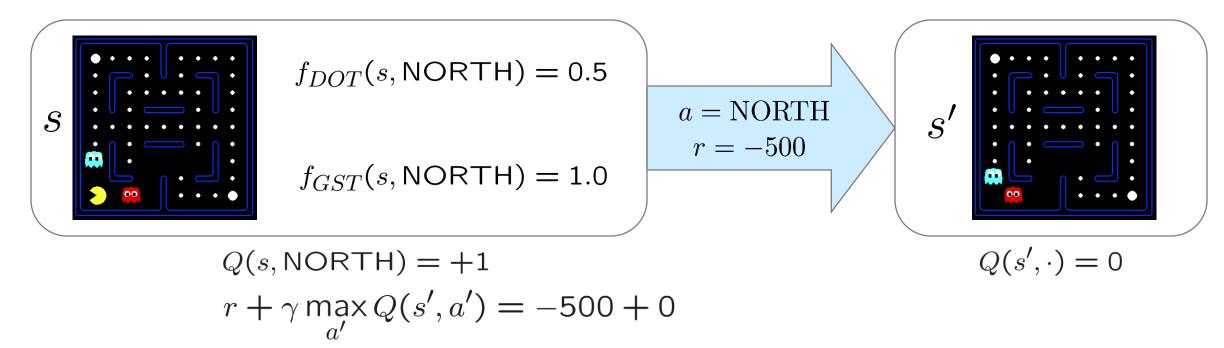
$$\begin{aligned} & \text{transition} = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \qquad \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



Example: Q-Pacman

$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$



difference = -501
$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

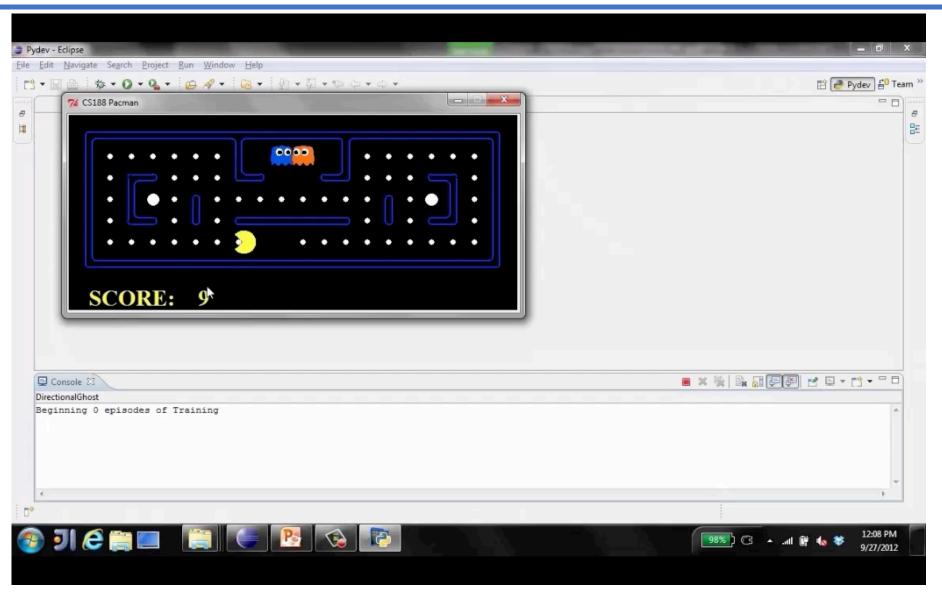
 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

es Madison

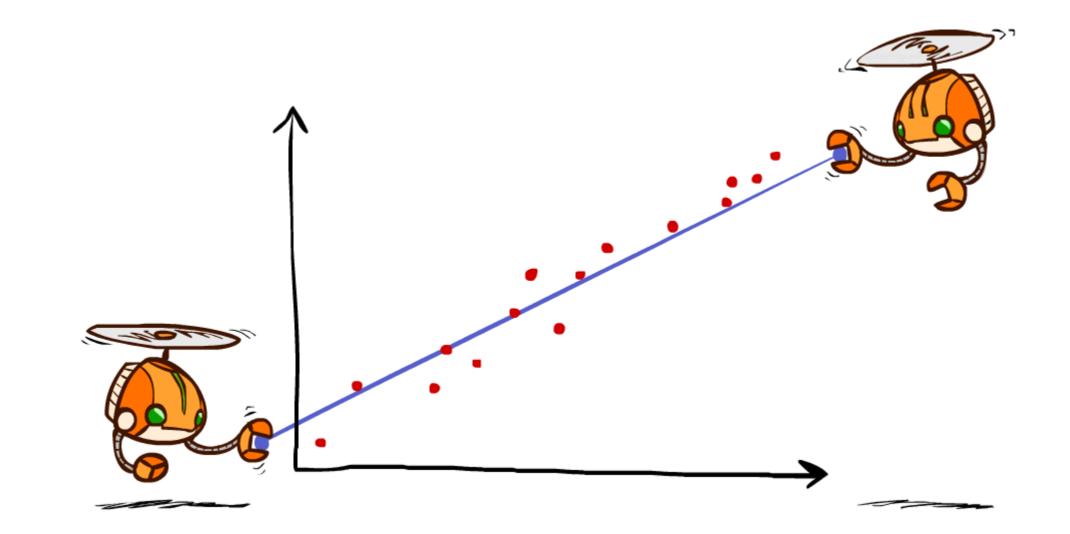
UNIVERSITY.

[Demo: approximate Qlearning pacman (L11D10)] Figure from Berkley Al

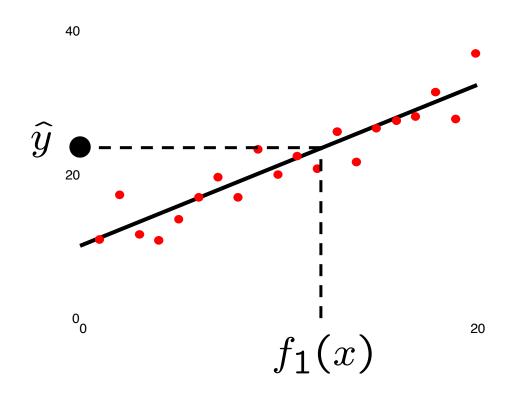
Video: Approximate Q-Learning Pacman

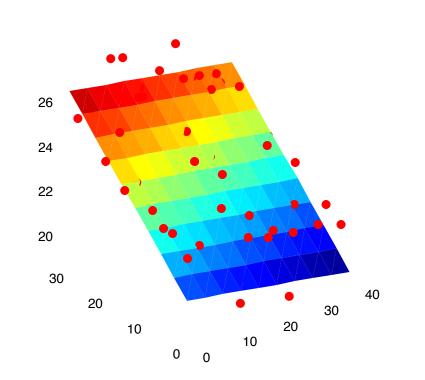


Q-Learning and Least Squares



Linear Approximation: Regression*





Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares *

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Observation y
Prediction \hat{y}
 $\int_{0}^{0} f_1(x)$

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

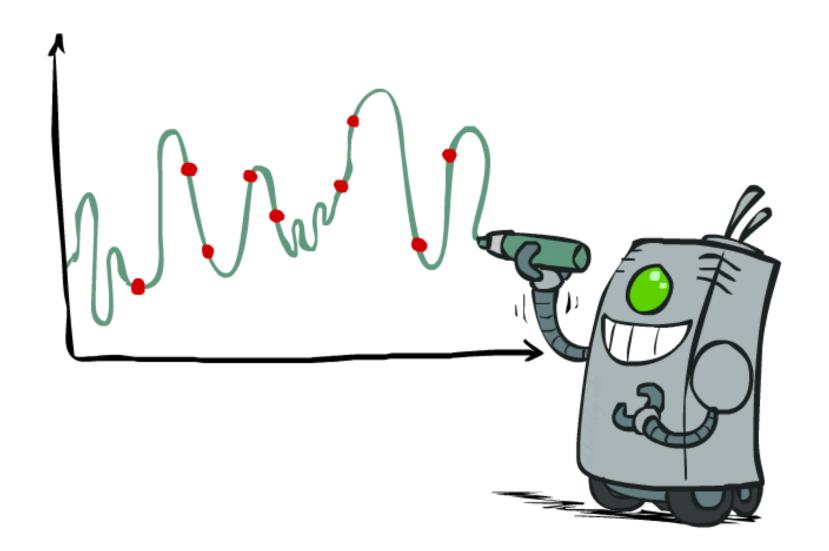
Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target"

"prediction"

Overfitting: Why Limiting Capacity Can Help*



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Helicopter Flying

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Reasoning with Logic!

