
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Reinforcement Learning (Part 1)

• HW 6 is will be release tomorrow. Due next Tuesday evening.

• Quiz 3a will be published Tuesday after class and due before class on
Thursday (March 11th) (so, March 10th in reality).

Announcements

2

Reinforcement Learning

3
Figure from Berkley AI

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk/Run for Soccer

4
Figure from Berkley AI

Initial A Learning Trial After Learning [1K Trials]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

[Demo: Crawler Bot (L10D1)]

Your Next Project: The Crawler

Video of the Crawler

Reinforcement Learning

Figure from Berkley AI

• Still assume a Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Figure from Berkley AI

Offline Solution Online Learning

Model Learning

Figure from Berkley AI

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

Example: Model-Based Learning

Figure from Berkley AI

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age

Figure from Berkley AI

Goal: Compute expected age of cs444 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Learning

Figure from Berkley AI

Passive Reinforcement Learning

Figure from Berkley AI

Passive Reinforcement Learning

Figure from Berkley AI

• Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Figure from Berkley AI

• Goal: Compute values for each state under p

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the

sum of discounted rewards turned out to be
• Average those samples

• This is called direct evaluation

Example: Direct Evaluation

Figure from Berkley AI

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

Figure from Berkley AI

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values,

using just sample transitions

• What bad about it?
• It wastes information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

Figure from Berkley AI

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Sample-based Policy Evaluation

Figure from Berkley AI

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

Figure from Berkley AI

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

Figure from Berkley AI

• Exponential moving average
• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Figure from Berkley AI

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

Figure from Berkley AI

• TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,sʼ
sʼ

Active Reinforcement Learning

Figure from Berkley AI

Active Reinforcement Learning

Figure from Berkley AI

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find

out what happens…

Detour: Q-Value Iteration

Figure from Berkley AI

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

Figure from Berkley AI

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Demo of Q-Learning Gridworld

Figure from Berkley AI

Demo of Q-Learning -- Crawler

Figure from Berkley AI

Q-Learning Properties

Figure from Berkley AI

• Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

