

Artificial Intelligence

Markov Decision Processes (Part 2)

CS 444 – Spring 2021

Dr. Kevin Molloy

Department of Computer Science

James Madison University

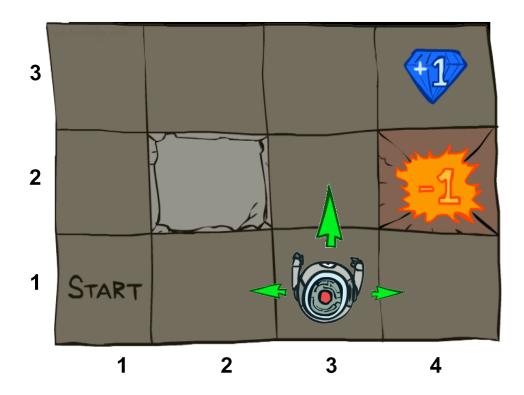
Much of this lecture is taken from Dan Klein and Pieter Abbeel AI class at UC Berkeley

Announcements

- HW 6 is will be release tomorrow. Due next Tuesday evening.
- Quiz 3a will be published Tuesday after class and due before class on Thursday (March 11th) (so, March 10th in reality).

Example: Grid World

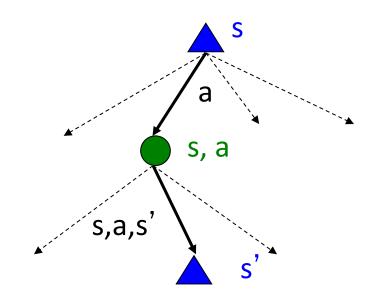
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



3

Recap: MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



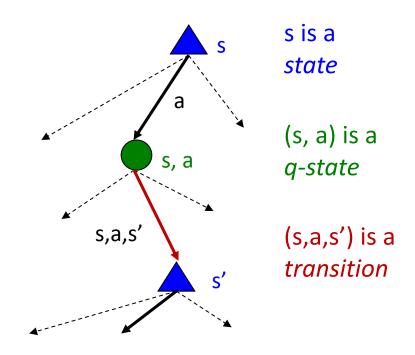
Optimal Quantities

The value (utility) of a state s:

V^{*}(s) = expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s)$ = optimal action from state s

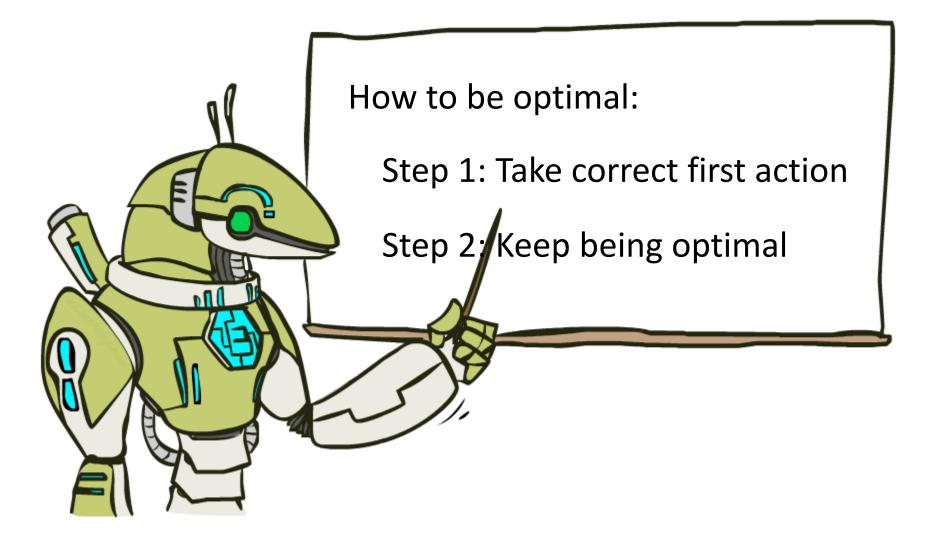


Gridworld Values V* and Q*

○ ○ ○ Gridworl	d Display	○ ○ ○ Gridworld Display
0.64 → 0.74 →	0.85) 1.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.57	0.57 -1.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
▲ 0.49 < 0.43	▲ 0.48 < 0.28	0.49 0.49 0.41 0.43 0.42 0.40 0.29 0.28 0.13 0.27
VALUES AFTER	LOO ITERATIONS	Q-VALUES AFTER 100 ITERATIONS

6

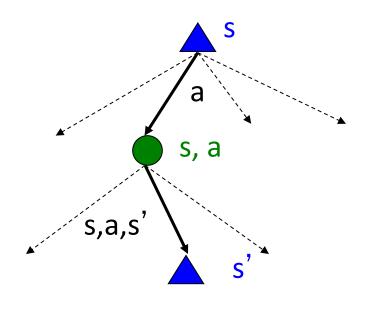
The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



• These are the **Bellman equations**, and they characterize optimal values in a way we'll use over and over

Value Iteration

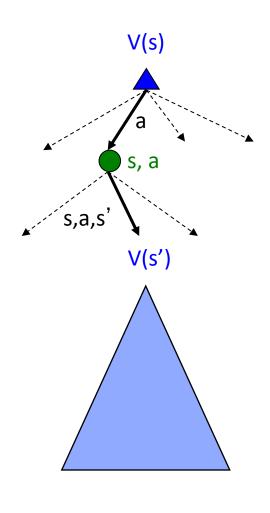
• Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

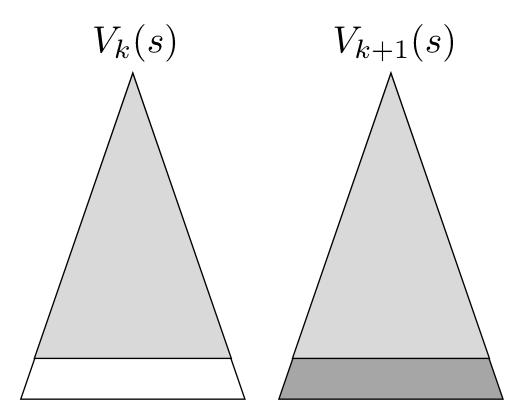
- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values



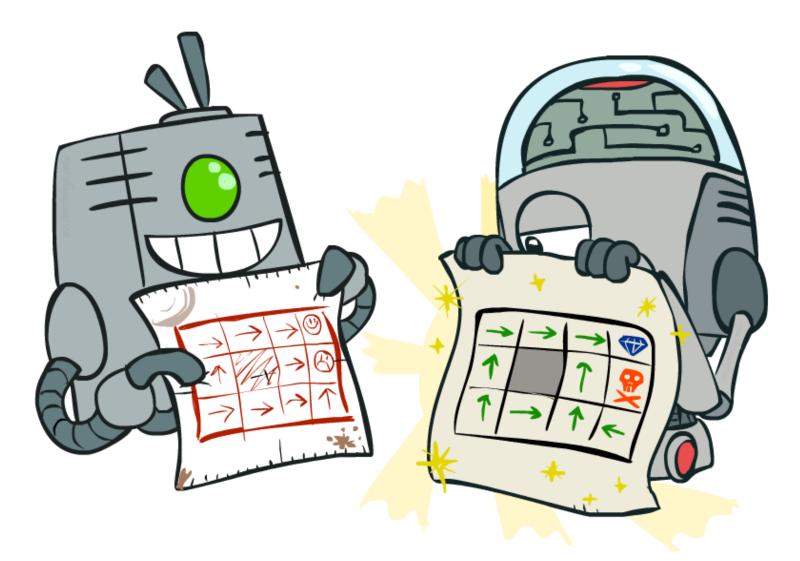
Q

Convergence*

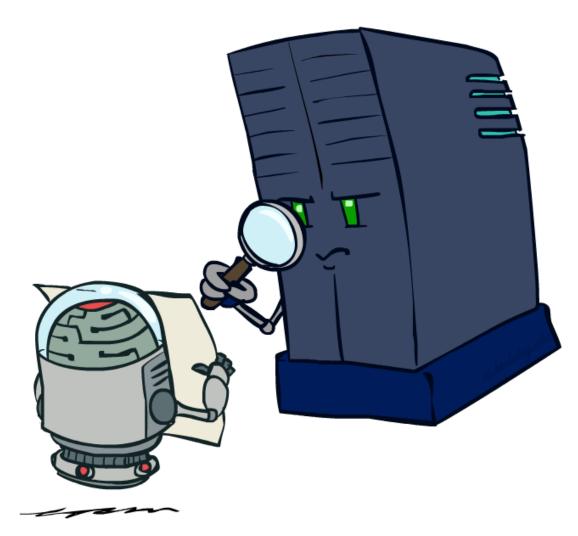
- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, $V_{k\!+\!1}$ has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by $\boldsymbol{\gamma}^k$ that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge



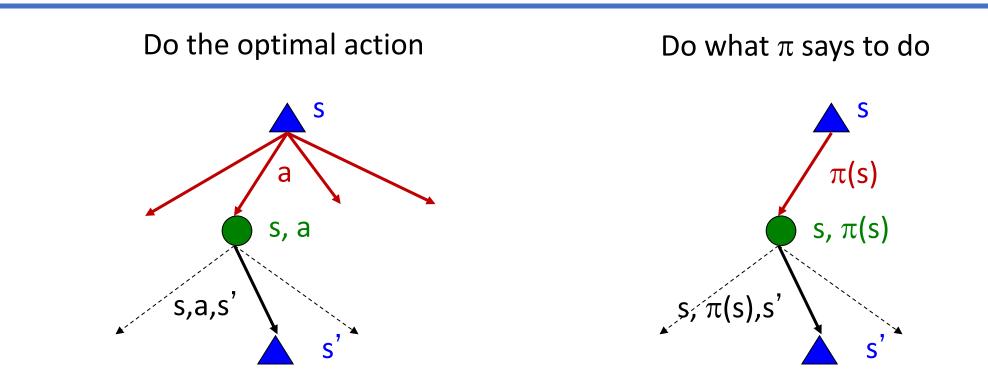
Policy Methods



Policy Evaluation



Fixed Policies

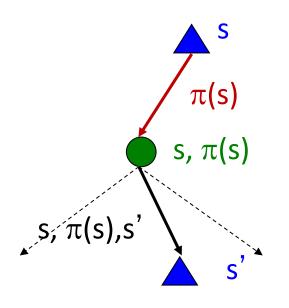


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

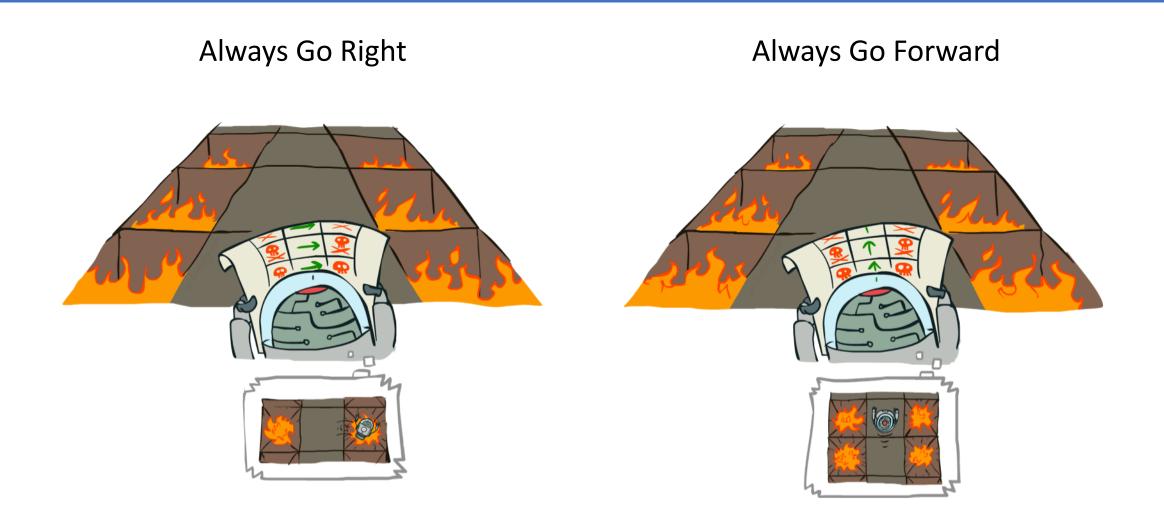
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

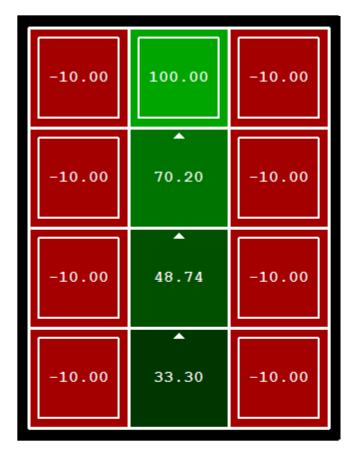


Example: Policy Evaluation

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Right

Always Go Forward



Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

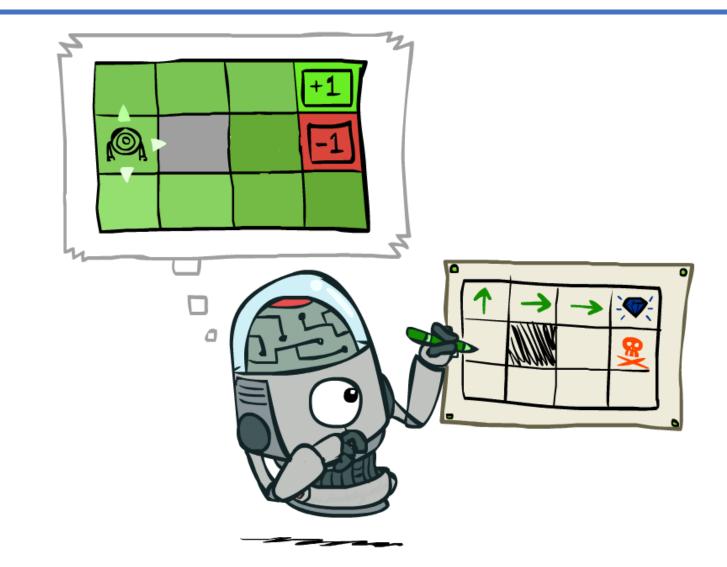
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

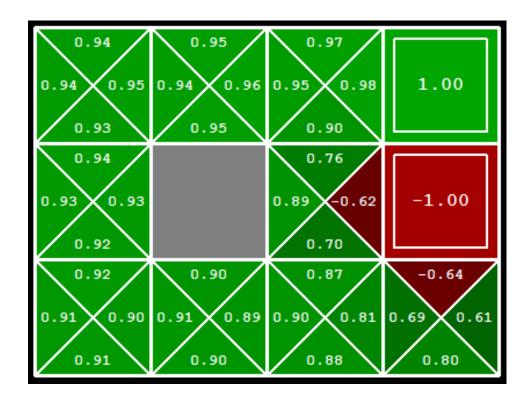
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

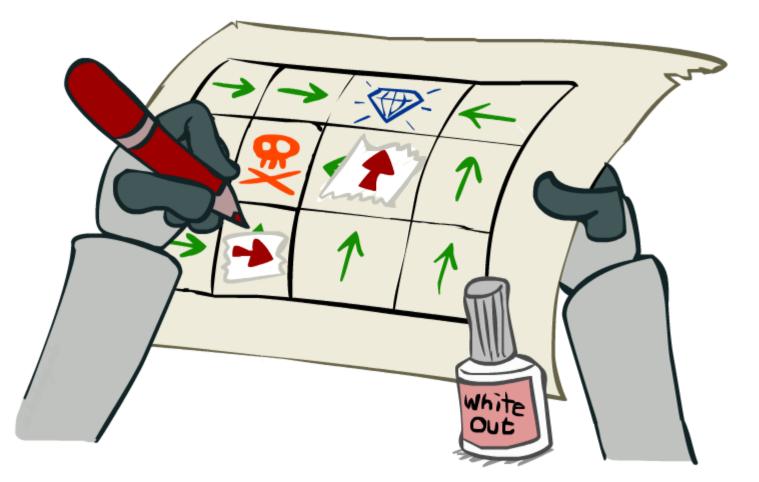
- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



• Important lesson: actions are easier to select from q-values than values!

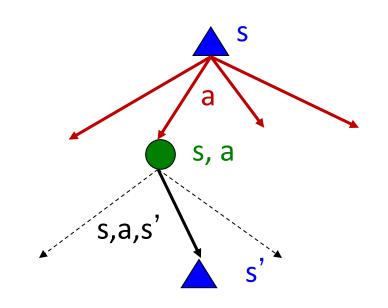
Policy Iteration



• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



0 0	Gridworl	d Display	
•	•	•	0.00
•		• 0.00	0.00
•	•	• 0.00	• 0.00

VALUES AFTER 0 ITERATIONS

000		Gridworl	d Display		
	•	•	0.00 →	1.00	
	•		∢ 0.00	-1.00	
	•	•	•	0.00	
	VALUES AFTER 1 ITERATIONS				

0 0	O O Gridworld Display			
	0.00	0.00 →	0.72 →	1.00
	0.00		0.00	-1.00
		^		
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 2 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

25 Figure from Berkley AI

0 0	0	Gridworld	d Display	
	0.00 >	0.52)	0.78)	1.00
	•		• 0.43	-1.00
	•	•	•	0.00
				-

VALUES AFTER 3 ITERATIONS

000	Gridworl	d Display		
0.37)	0.66)	0.83)	1.00	
		^		
0.00		0.51	-1.00	
		^		
0.00	0.00 →	0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

000)	Gridworl	d Display		
	0.51 →	0.72)	0.84)	1.00	
	^		^		
	0.27		0.55	-1.00	
	^		^		
	0.00	0.22 →	0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

00	0	Gridworl	d Display	
	0.59 →	0.73 ≯	0.85 →	1.00
	^		^	
	0.41		0.57	-1.00
	^		^	
	0.21	0.31 →	0.43	∢ 0.19
	VALUE	S AFTER	6 ITERA	FIONS

00	0	Gridworl	d Display		
	0.62)	0.74 ▶	0.85)	1.00	
	• 0.50		• 0.57	-1.00	
	▲ 0.34	0.36)	• 0.45	∢ 0.24	
	VALUES AFTER 7 ITERATIONS				

0 0	0	Gridworl	d Display	
	0.63)	0.74 ▶	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

000	Gridwork	d Display			
0.64 →	0.74 →	0.85 →	1.00		
^		•			
0.55		0.57	-1.00		
•		•			
0.46	0.40 →	0.47	• 0.27		
VALUE	VALUES AFTER 9 ITERATIONS				

Gridworld Display						
(0.64)	0.74)	0.85 →	1.00		
	•		•			
(0.56		0.57	-1.00		
(▲ 0.48	∢ 0.41	• 0.47	∢ 0.27		
VALUES AFTER 10 ITERATIONS						

C C C Gridworld Display							
	0.64)	0.74 →	0.85)	1.00			
	• 0.56		• 0.57	-1.00			
	• 0.48	◀ 0.42	• 0.47	∢ 0.27			
	VALUES AFTER 11 ITERATIONS						

00	Gridworld Display					
	0.64 →	0.74 →	0.85)	1.00		
	•		•			
	0.57		0.57	-1.00		
	^		^			
	0.49	∢ 0.42	0.47	∢ 0.28		
	VALUES AFTER 12 ITERATIONS					

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Comparison

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values convee:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

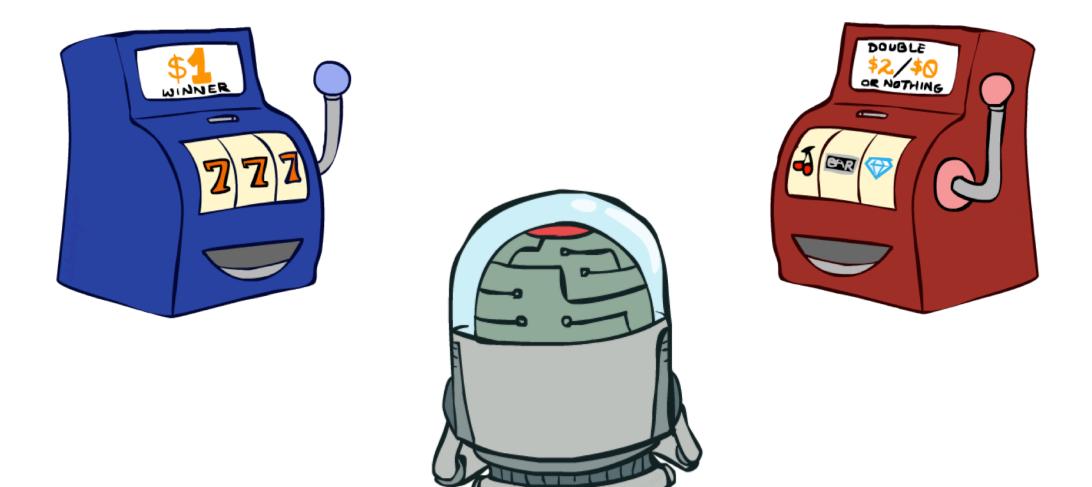
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

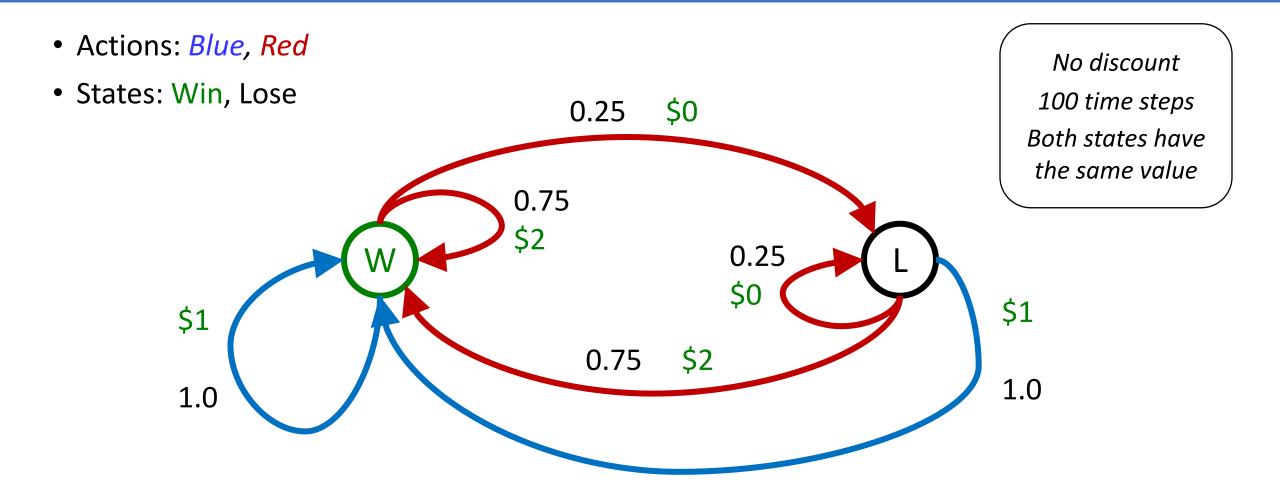
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

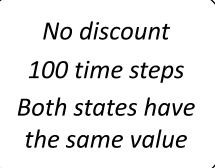


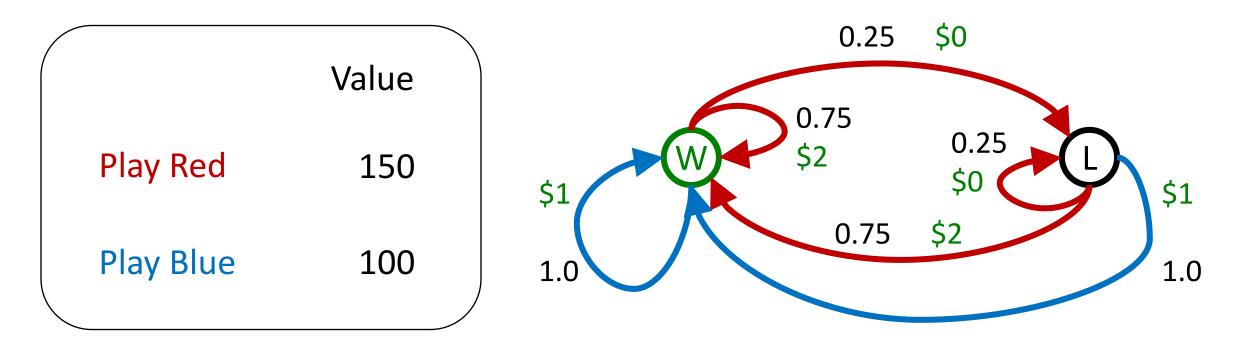
Double-Bandit MDP



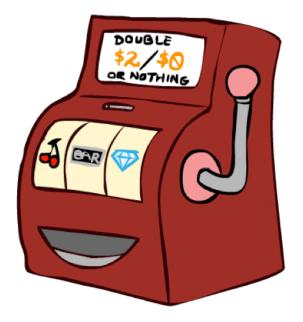
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!



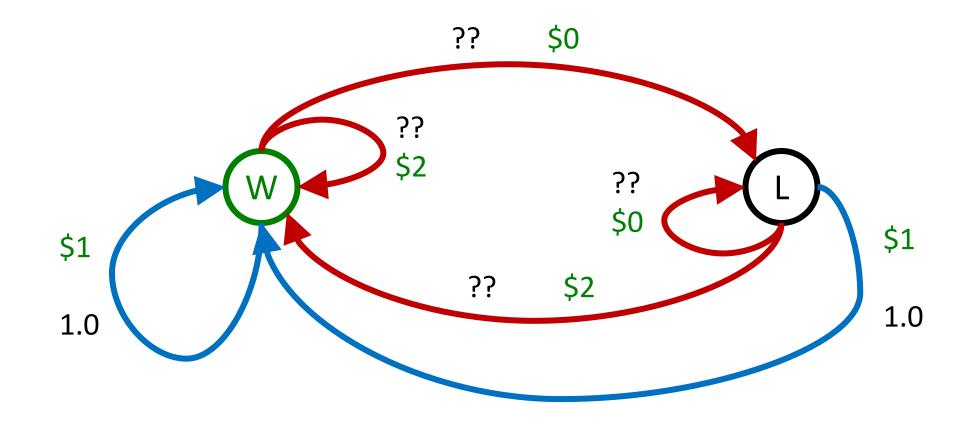


Let's Play!



\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning



Let's Play!

\$0 \$0 \$0 \$2 \$0\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

