
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Markov Decision Processes (Part 2)

• HW 6 is will be release tomorrow. Due next Tuesday evening.

• Quiz 3a will be published Tuesday after class and due before class on
Thursday (March 11th) (so, March 10th in reality).

Announcements

2

Example: Grid World

3
Figure from Berkley AI

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Recap: MDPs

4
Figure from Berkley AI

• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,sʼ
sʼ

Optimal Quantities

5
Figure from Berkley AI

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Gridworld Values V* and Q*

6
Figure from Berkley AI

The Bellman Equations

7
Figure from Berkley AI

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

8
Figure from Berkley AI

• Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

• These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,sʼ
sʼ

Value Iteration

9
Figure from Berkley AI

• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,sʼ
V(s’)

Convergence*

10
Figure from Berkley AI

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge

Policy Methods

11
Figure from Berkley AI

Policy Evaluation

12
Figure from Berkley AI

Fixed Policies

13
Figure from Berkley AI

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy p(s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,sʼ
sʼ

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

14
Figure from Berkley AI

• Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

• Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Example: Policy Evaluation

15
Figure from Berkley AI

Always Go Right Always Go Forward

Example: Policy Evaluation

16
Figure from Berkley AI

Always Go Right Always Go Forward

Policy Evaluation

17
Figure from Berkley AI

• How do we calculate the V’s for a fixed policy p?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Policy Extraction

18
Figure from Berkley AI

Computing Actions from Values

19
Figure from Berkley AI

• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

20
Figure from Berkley AI

• Let’s imagine we have the optimal q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

21
Figure from Berkley AI

Problems with Value Iteration

22
Figure from Berkley AI

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,sʼ
sʼ

k = 0

23
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 1

24
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 2

25
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 3

26
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 4

27
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 5

28
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 6

29
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 7

30
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 8

31
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 9

32
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 10

33
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 11

34
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 12

35
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

36
Figure from Berkley AI

• Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
• Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions

Comparison

37
Figure from Berkley AI

• Evaluation: For fixed current policy p, find values with policy evaluation:
• Iterate until values convee:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:

Comparison

38
Figure from Berkley AI

• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

39
Figure from Berkley AI

• So you want to….
• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

40
Figure from Berkley AI

Double-Bandit MDP

41
Figure from Berkley AI

• Actions: Blue, Red
• States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount
100 time steps

Both states have
the same value

Offline Planning

42
Figure from Berkley AI

• Solving MDPs is offline planning
• You determine all quantities through computation
• You need to know the details of the MDP
• You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let's Play!

43
Figure from Berkley AI

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Online Planning

44
Figure from Berkley AI

W L
$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Let's Play!

45
Figure from Berkley AI

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

What Just Happened?

46
Figure from Berkley AI

• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

47
Figure from Berkley AI

