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Local Search & Optimization



• HW 2 is due tonight

• PA 1 is due this Monday, Feb  22

• First quiz is released today after class.  It is due tomorrow by 5:00 pm 
tomorrow Friday).

Announcements
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Learning Objectives for Today

• Local Search
• Hill Climbers
• Evolutionary Algorithms
• Beam Search
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Review of Search Problems/Methods so Far

• Uninformed and Informed Search
• Systematic search
• Assume finite state space (not always the case)
• Environment may not be fully observable
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Local Search
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• Traveling Salemans Problem

• Placing N-queens on a chessboard so no 
queens can "attack" each other 

• Design the layout of a circuit board

• Protein structure prediction
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Other Problems to Solve?
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Optimization Problems

Key Difference from problems so far?

• The goal itself is the solution. No path required

• The state space is a set of complete solutions.

Find the optimal configuration.

Key idea: Iterative improvement
• Keep a single "current" state, try to improve it.  That is, no memory of 

what has been found so far, hence, sometimes called (memory-less) local 
search

• Iterative refers to iterating between states
• Improvement refers to later states improving some objective/goal 

function or satisfying more 
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Example: Traveling Salesman Problem (TSP)
Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of the optimal solution very quickly 
(even with thousands of cities)
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Example: n-queens
Put n queens on an n x n board with no two queens on the same row, column, 
or diagonal.
Move a queen to reduce number of conflicts.

Local search techniques can solve this problem almost instantaneously for very 
large n (n = 1 million) (recall an 8x8 board has 88 states (≈ 17 million states).
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Hill Climbing Algorithm

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?
• Complete?
• Optimal?

• What’s good about it?
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Hill Climbing
function Hill-Climbing(problem) returns a state (local optimum)

inputs: problem, a problem
local variables: current (a node)

neighbor (a node)
current ← MAKE-NODE(INITIAL-STATE [problem])
loop do

neighbor ← a successor of current
If Value[neighbor] is not better than Value[current]

then return State ← [current]
current ← neighbor

end
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Hill Climbing Generating Neighboring States

What if neighbors cannot be enumerated? What if state space is continuous?

How is the neighbor of a current state generated?

• Stochastic hill climbing: generate neighbor at random (continuous spaces, 
perform a small perturbation to generate neighbor)
• Gradient-based variants: for continuous state spaces
• (Conjugate) Gradient Descent/Ascent
• Other numerical optimization algorithms (beyond scope of CS 444)

If state space is discrete and neighbor list is finite, all neighbors of a current 
state can be considered:
• Steepest hill climbing: compare best neighbor to current
• First-choice hill climbers use the first choice that is improves on current

Varies with approach…
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Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?



Funnell landscape from Ken Dill

Challenging Hill Climbing Landscape
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Dealing with Local Optima
Randomization:
• Random/multi restart allows embarrassing parallelization
• Iterated Local Search (ILS)

Memory-less randomized/stochastic search optimization:
Monte Carlo search
Simulated Annealing Monte Carlo

Memory-based randomized search:
• Memory via search structure

• List: tabu search
• Tree-/graph based search

• Memory via population
• Evolutionary search strategies
• Evolutionary Algorithms (Eas)
• Genetic Algorithms (GA)
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Random-Restart Hill Climbers
Idea: Launch multiple hill climbers from different initial states/configurations.

Bonus: Amenable to embarrassing parallelization.

Take-away: It is often better to spend CPU time exploring the space, then carefully 
optimizing from an initial condition.

Why?
Repeated restarts give a global view of the state space (instead of just 
the local one provided by each climber).

Drawback?  The hill climbers do not talk to one another.
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Escaping a local maximum/minimum

How to escape from a local minimum?

Make a random move – this is what we call Iterated Local Search (ILS)
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Local Beam Search
Idea: Don’t keep just a single state, keep k states.

Not the same a k searches in parallel!
Search that finds good states recruits other searches to join them

Issues/Problems?

Generate k starting states at random.
REPEAT

For each state k generate a successor state
Pick the best k states from the set of 2k states (the originals and the 
"offspring"

Quite often, all k states end up on some local "hill"
Solution: choose k successors randomly (biased towards 
"good" states".  This is call Monte Carlo sampling 
(robotics/computer vision use this in particle filters).
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Simulated Annealing

• Idea:  Escape local maxima by allowing downhill moves
• But make them rarer as time goes on



20
Figure from Berkley AI

Simulated Annealing

• Theoretical guarantee:
• Stationary distribution:
• If T decreased slowly enough,

will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all in a 
row
• People think hard about ridge operators which let you 

jump around the space in better ways
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Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique around


