
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Local Search & Optimization

• HW 2 is due tonight

• PA 1 is due this Monday, Feb 22

• First quiz is released today after class. It is due tomorrow by 5:00 pm
tomorrow Friday).

Announcements

2

Learning Objectives for Today

• Local Search
• Hill Climbers
• Evolutionary Algorithms
• Beam Search

3
Figure from Berkley AI

Review of Search Problems/Methods so Far

• Uninformed and Informed Search
• Systematic search
• Assume finite state space (not always the case)
• Environment may not be fully observable

4
Figure from Berkley AI

Local Search

5
Figure from Berkley AI

• Traveling Salemans Problem

• Placing N-queens on a chessboard so no
queens can "attack" each other

• Design the layout of a circuit board

• Protein structure prediction

6
Figure from Berkley AI

Other Problems to Solve?

7
Figure from Berkley AI

Optimization Problems

Key Difference from problems so far?

• The goal itself is the solution. No path required

• The state space is a set of complete solutions.

Find the optimal configuration.

Key idea: Iterative improvement
• Keep a single "current" state, try to improve it. That is, no memory of

what has been found so far, hence, sometimes called (memory-less) local
search

• Iterative refers to iterating between states
• Improvement refers to later states improving some objective/goal

function or satisfying more

8
Figure from Berkley AI

Example: Traveling Salesman Problem (TSP)
Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of the optimal solution very quickly
(even with thousands of cities)

9

Example: n-queens
Put n queens on an n x n board with no two queens on the same row, column,
or diagonal.
Move a queen to reduce number of conflicts.

Local search techniques can solve this problem almost instantaneously for very
large n (n = 1 million) (recall an 8x8 board has 88 states (≈ 17 million states).

10
Figure from Berkley AI

Hill Climbing Algorithm

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?
• Complete?
• Optimal?

• What’s good about it?

11

Hill Climbing
function Hill-Climbing(problem) returns a state (local optimum)

inputs: problem, a problem
local variables: current (a node)

neighbor (a node)
current ← MAKE-NODE(INITIAL-STATE [problem])
loop do

neighbor ← a successor of current
If Value[neighbor] is not better than Value[current]

then return State ← [current]
current ← neighbor

end

12
Figure from Berkley AI

Hill Climbing Generating Neighboring States

What if neighbors cannot be enumerated? What if state space is continuous?

How is the neighbor of a current state generated?

• Stochastic hill climbing: generate neighbor at random (continuous spaces,
perform a small perturbation to generate neighbor)
• Gradient-based variants: for continuous state spaces
• (Conjugate) Gradient Descent/Ascent
• Other numerical optimization algorithms (beyond scope of CS 444)

If state space is discrete and neighbor list is finite, all neighbors of a current
state can be considered:
• Steepest hill climbing: compare best neighbor to current
• First-choice hill climbers use the first choice that is improves on current

Varies with approach…

13
Figure from Berkley AI

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Funnell landscape from Ken Dill

Challenging Hill Climbing Landscape

15
Figure from Berkley AI

Dealing with Local Optima
Randomization:
• Random/multi restart allows embarrassing parallelization
• Iterated Local Search (ILS)

Memory-less randomized/stochastic search optimization:
Monte Carlo search
Simulated Annealing Monte Carlo

Memory-based randomized search:
• Memory via search structure

• List: tabu search
• Tree-/graph based search

• Memory via population
• Evolutionary search strategies
• Evolutionary Algorithms (Eas)
• Genetic Algorithms (GA)

16
Figure from Berkley AI

Random-Restart Hill Climbers
Idea: Launch multiple hill climbers from different initial states/configurations.

Bonus: Amenable to embarrassing parallelization.

Take-away: It is often better to spend CPU time exploring the space, then carefully
optimizing from an initial condition.

Why?
Repeated restarts give a global view of the state space (instead of just
the local one provided by each climber).

Drawback? The hill climbers do not talk to one another.

17
Figure from Berkley AI

Escaping a local maximum/minimum

How to escape from a local minimum?

Make a random move – this is what we call Iterated Local Search (ILS)

18
Figure from Berkley AI

Local Beam Search
Idea: Don’t keep just a single state, keep k states.

Not the same a k searches in parallel!
Search that finds good states recruits other searches to join them

Issues/Problems?

Generate k starting states at random.
REPEAT

For each state k generate a successor state
Pick the best k states from the set of 2k states (the originals and the
"offspring"

Quite often, all k states end up on some local "hill"
Solution: choose k successors randomly (biased towards
"good" states". This is call Monte Carlo sampling
(robotics/computer vision use this in particle filters).

19
Figure from Berkley AI

Simulated Annealing

• Idea: Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

20
Figure from Berkley AI

Simulated Annealing

• Theoretical guarantee:
• Stationary distribution:
• If T decreased slowly enough,

will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row
• People think hard about ridge operators which let you

jump around the space in better ways

21
Figure from Berkley AI

Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique around

