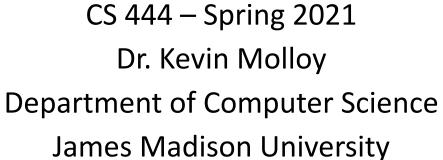


Artificial Intelligence Informed Search



Announcements

HW 2 is due tomorrow night.

• PA 1 is due Feb 1st You should have started by now.

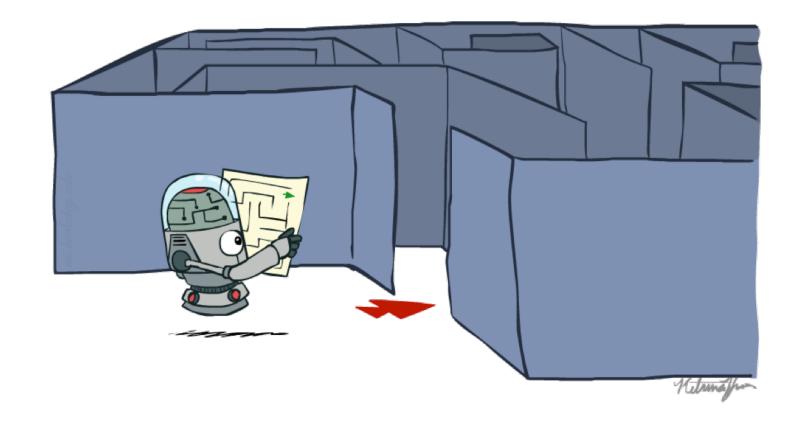
• First mastery quiz due this Friday. Topics will be posted on the website.

Learning Objectives for Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

Graph Search

Search Recap



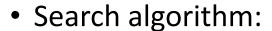
Search Recap

Search problem:

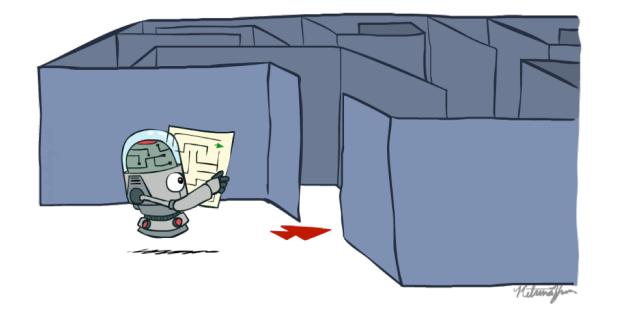
- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

• Search tree:

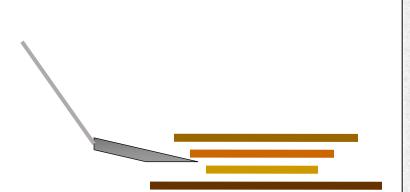
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)



- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans



Example: Pancake Problem



BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

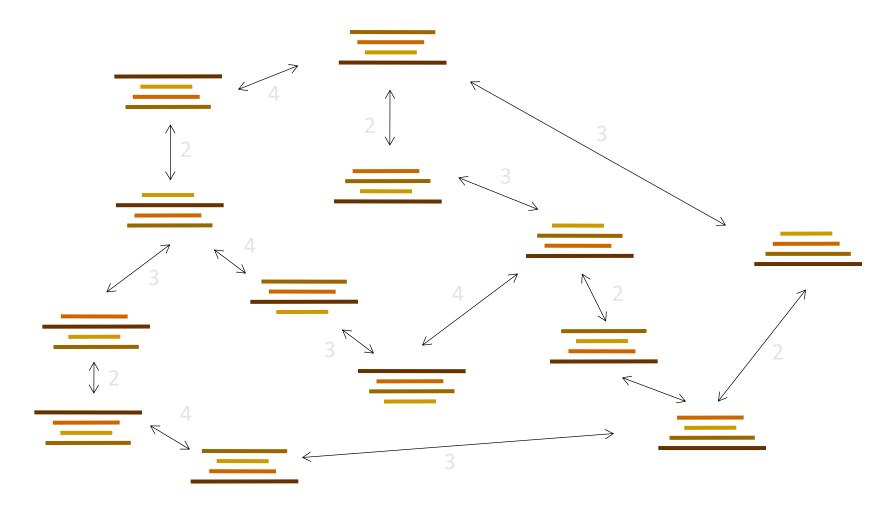
Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2-1 \leq g(n) \leq 2n+3$.

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

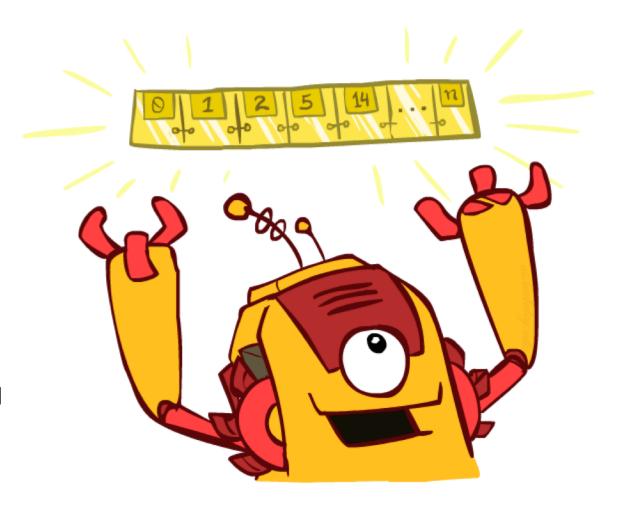


General Tree Search

function TREE-SEARCH (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end Action: flip top two Path to reach goal: Cost: 2 Flip four, flip three Total cost: 7

Search – Only Differences are in the Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

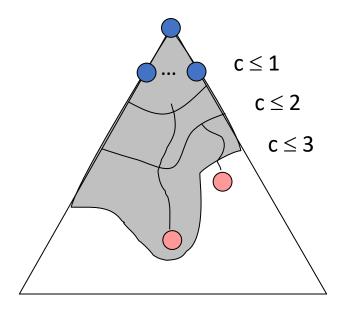


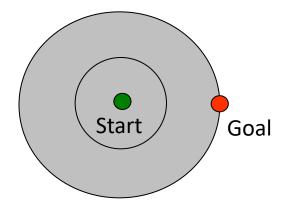
Uniform Cost Search

• Strategy: expand lowest path cost

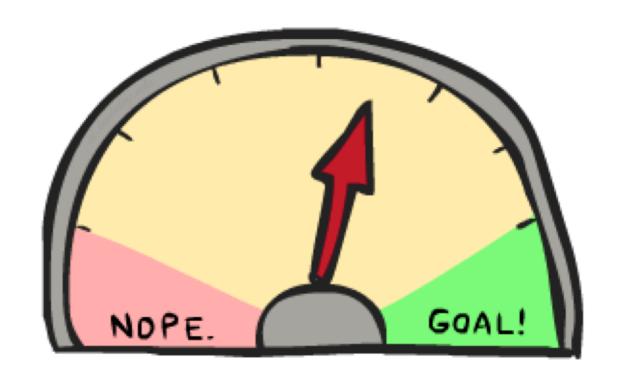
• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location





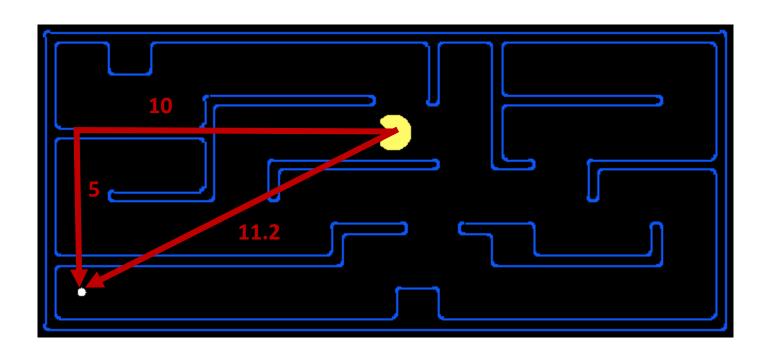
Informed Search

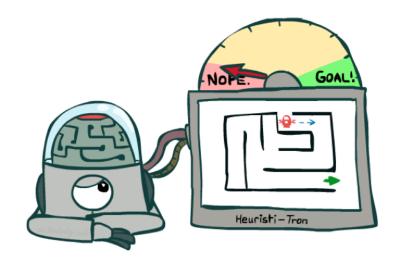


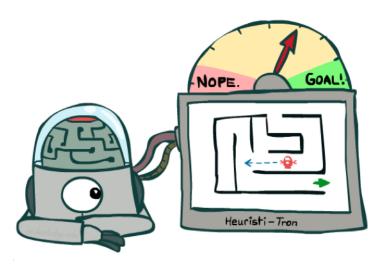
Search Heuristic

A heuristic is:

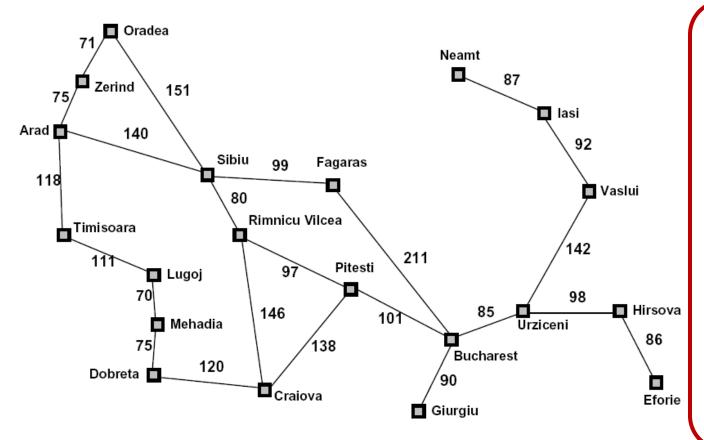
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing







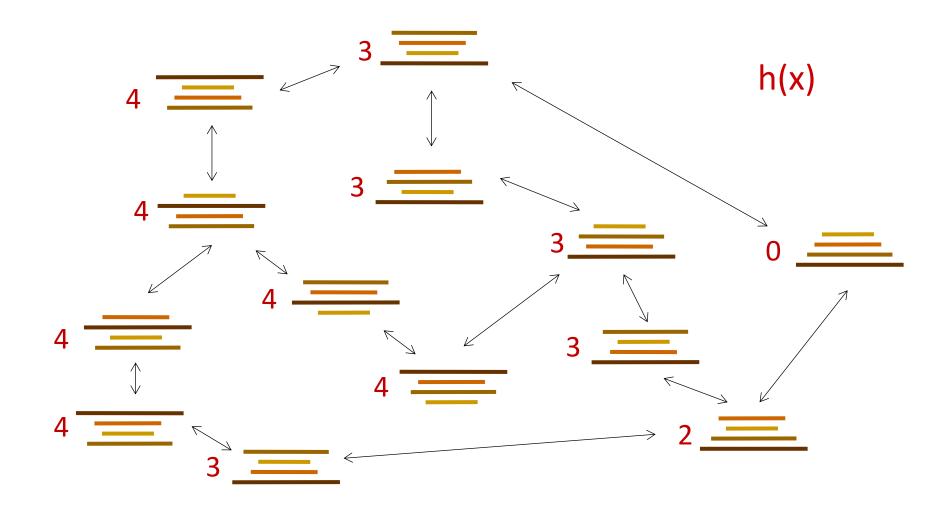
Example: Heuristic Function



Straight-line distance		
to Bucharest		
Arad	366	
Bucharest	0	
Craiova	160	
Dobreta	242	
Eforie	161	
Fagaras	178	
Giurgiu	77	
Hirsova	151	
Iasi	226	
Lugoj	244	
Mehadia	241	
Neamt	234	
Oradea	380	
Pitesti	98	
Rimnicu Vilcea	193	
Sibiu	253	
Timisoara	329	
Urziceni	80	
Vaslui	199	
Zerind	374	

h(x)

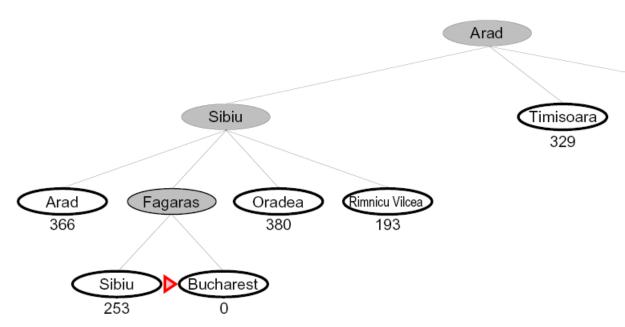
Example: Heuristic Function



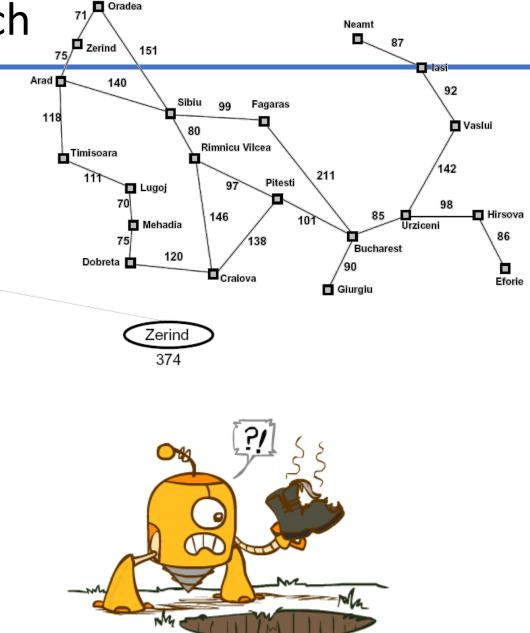
Greedy Search

Greedy Search

• Expand the node that seems closest...



What can go wrong?

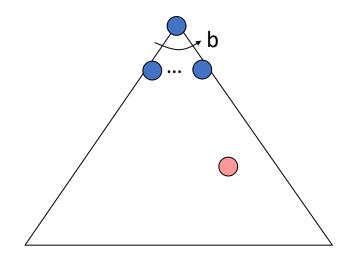


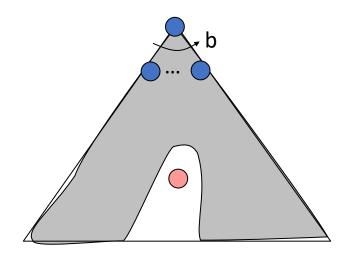
Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

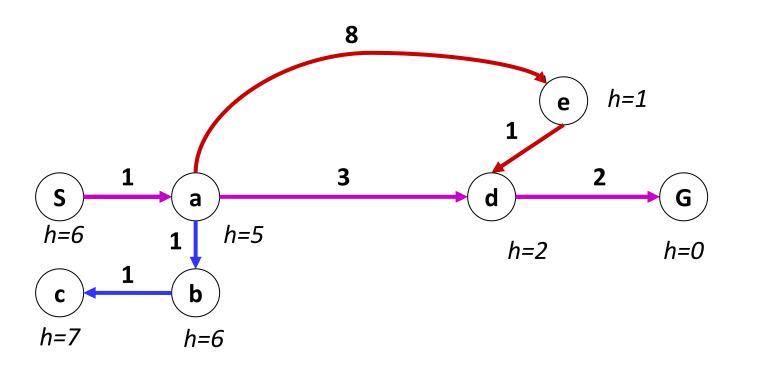




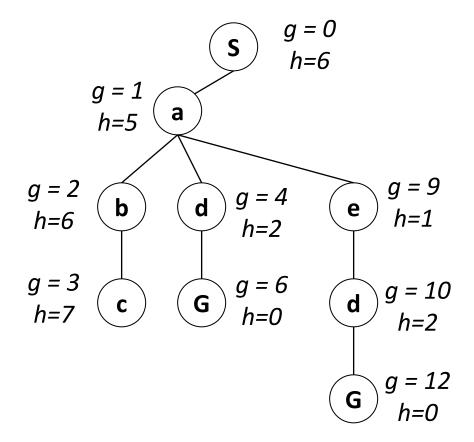
A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

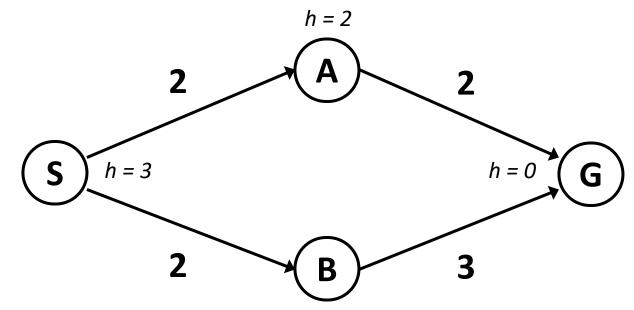


A* Search orders by the sum: f(n) = g(n) + h(n)



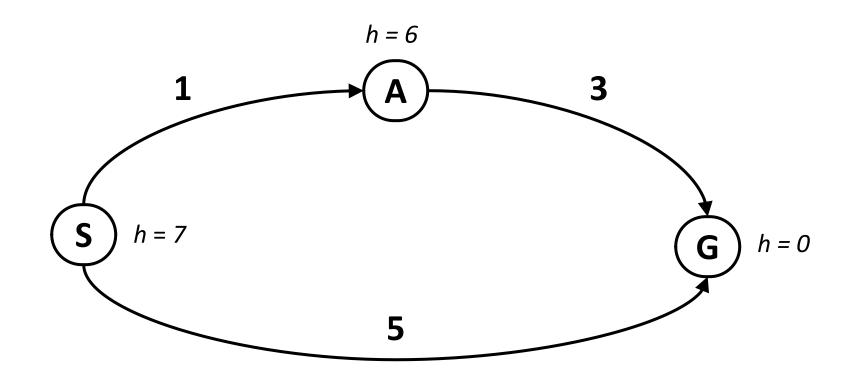
When should A* terminate?

• Should we stop when we enqueue a goal?



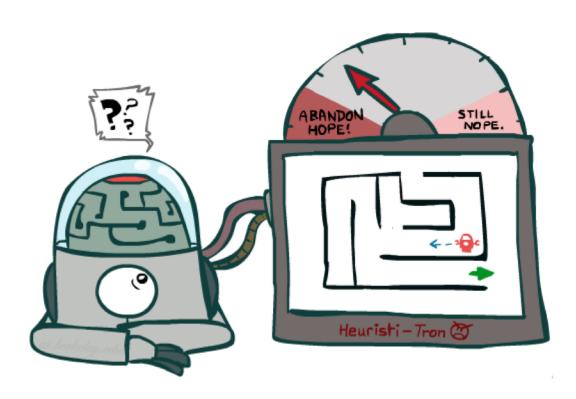
No: only stop when we dequeue a goal

Is A* Optimal?

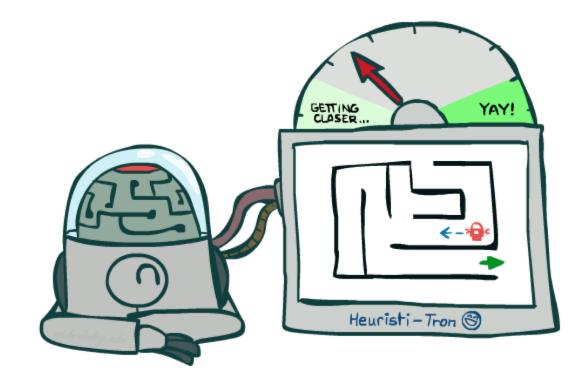


- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

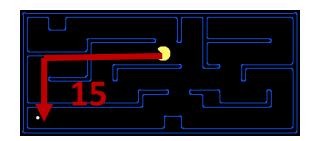
Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:



• Coming up with admissible heuristics is most of what's involved in using A* in practice.

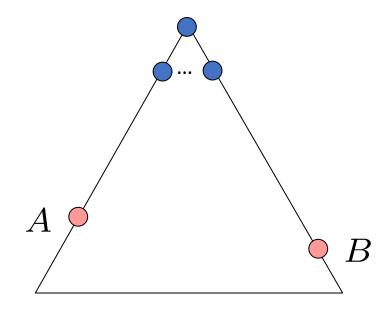
Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

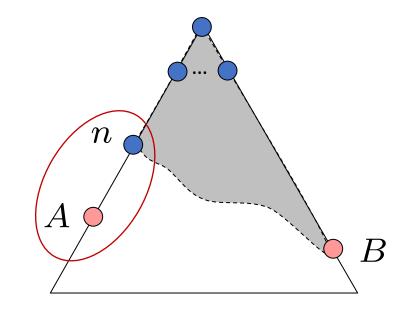
A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)



$$f(n) = g(n) + h(n)$$

$$f(n) \le g(A)$$

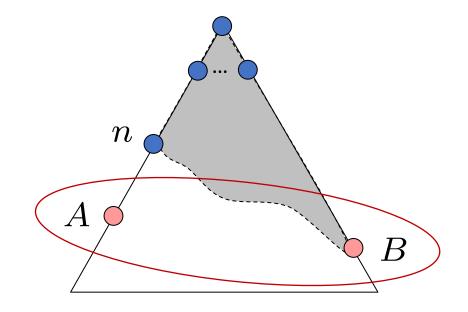
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)



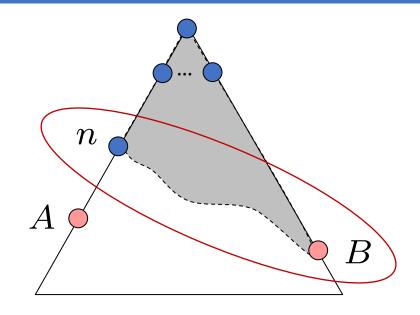
$$g(A) < g(B)$$
$$f(A) < f(B)$$

B is suboptimal h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

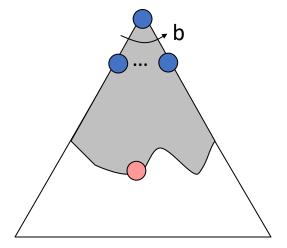
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

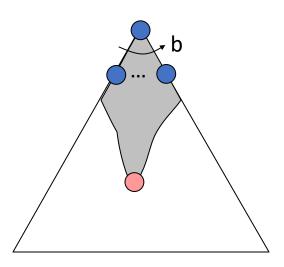


$$f(n) \le f(A) < f(B)$$

Properties of A*

Uniform-Cost

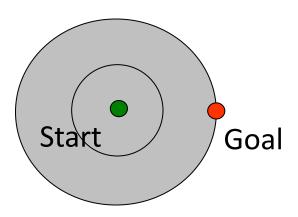


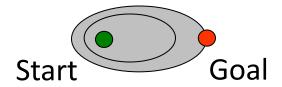


Uniform-Cost versus A* Contours

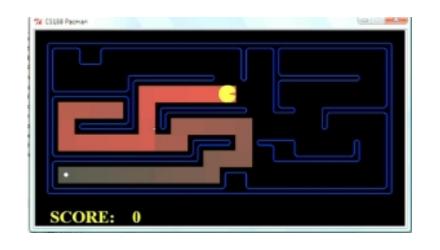
 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality





Pacman Comparison



Greedy

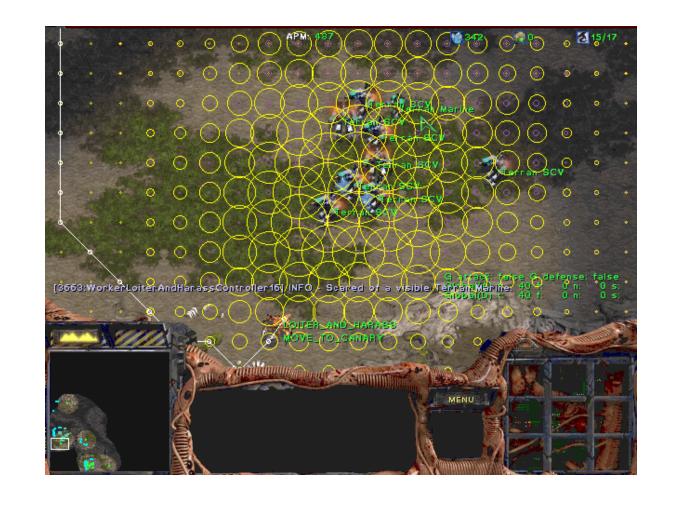
Uniform Cost

A*

A* Applications

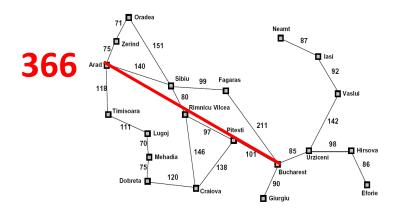
- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

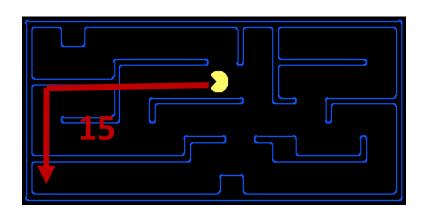
•



A*: Creating Admissible Heuristics

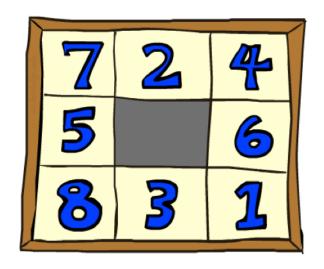
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available





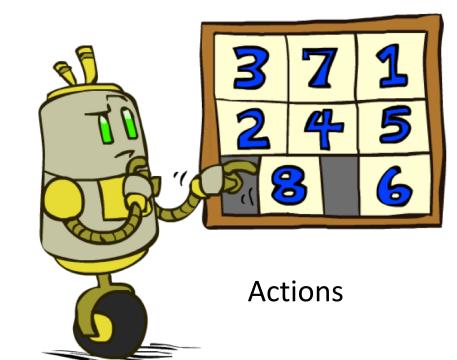
• Inadmissible heuristics are often useful too

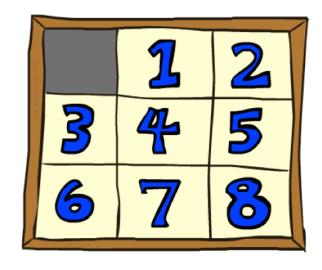
Example: 8 Puzzle



Start State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

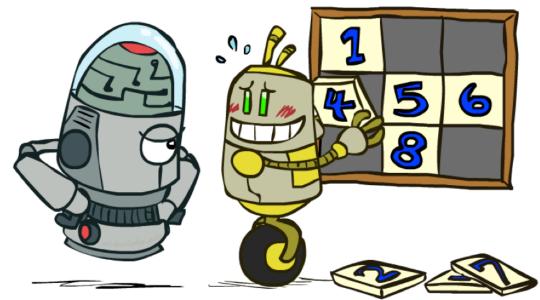


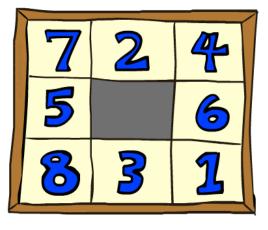


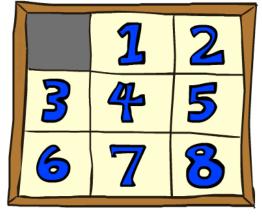
Goal State

8 Puzzle: Heuristic I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







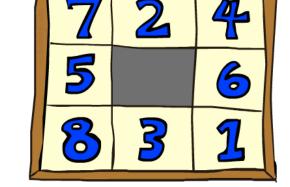
$C+\sim$	6 +	C+a+	_
วเล	ſι	State	פ

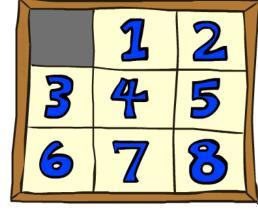
Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

8 Puzzle: Heuristic II

 What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?





Start State

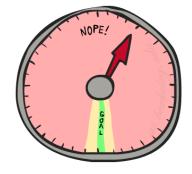
Goal State

- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle: Heuristic III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?



- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics and Dominance

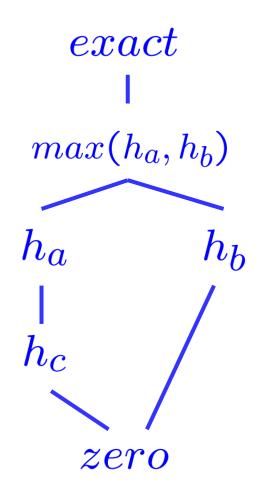
• Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

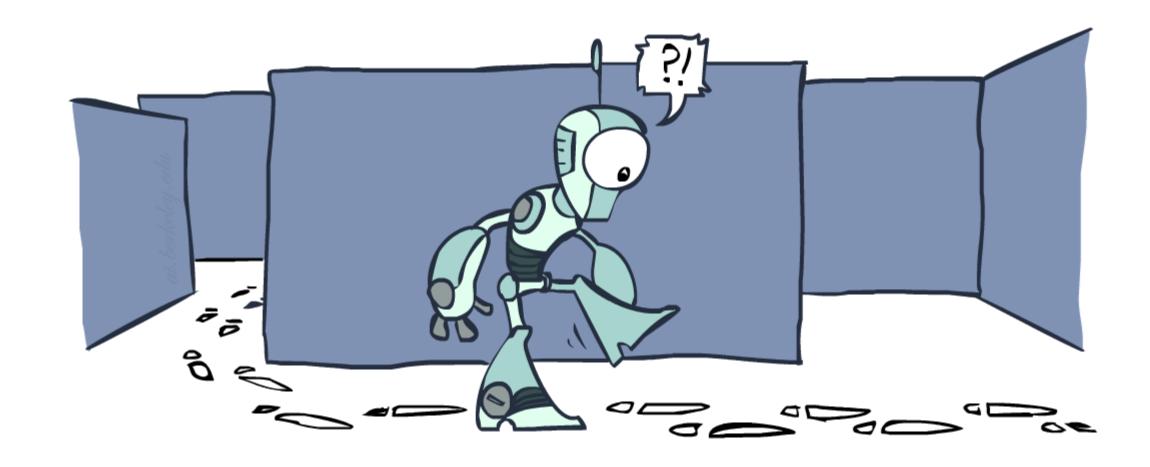
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

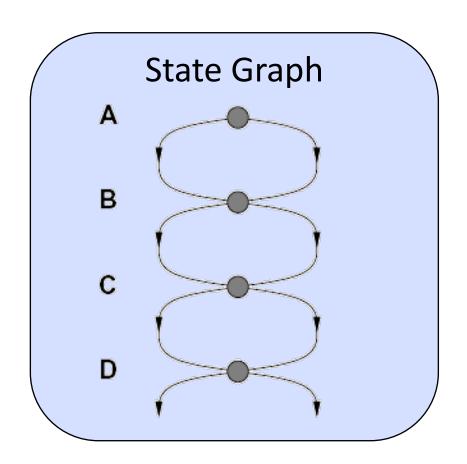


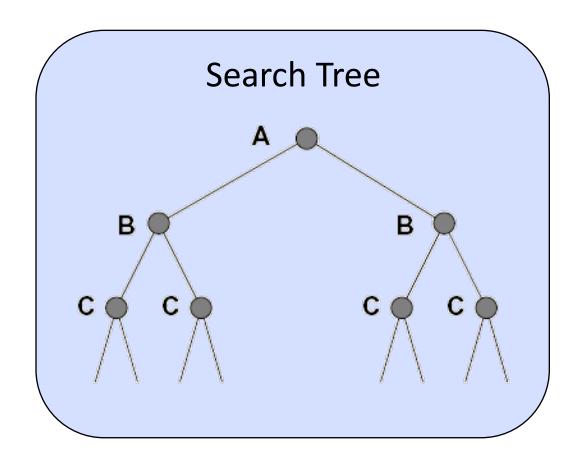
Graph Search



Tree Search: Extra Work!

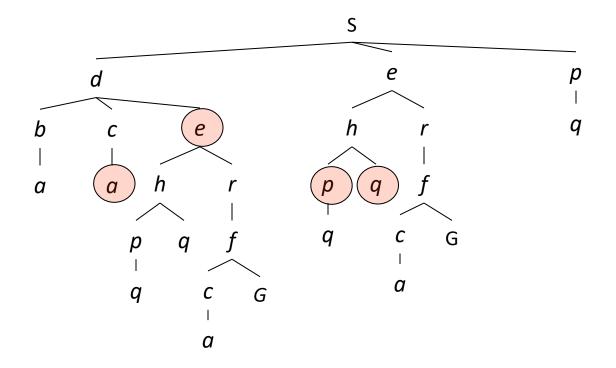
• Failure to detect repeated states can cause exponentially more work.





Graph Search

• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



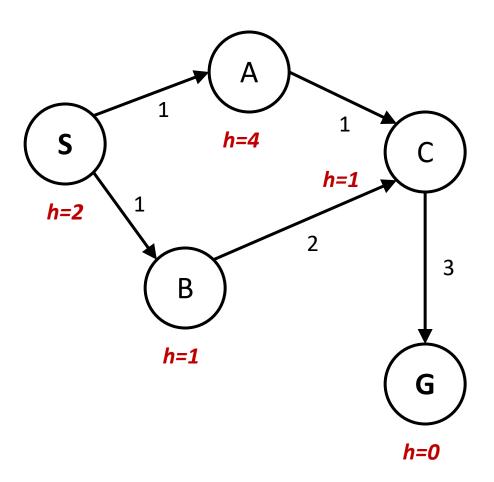
Graph Search Motivation

Idea: never expand a state twice

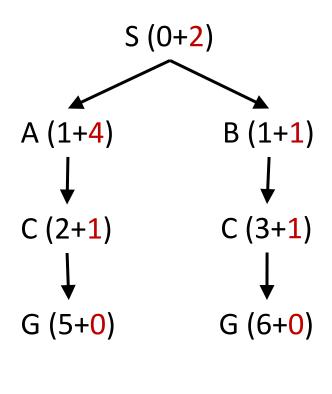
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong!

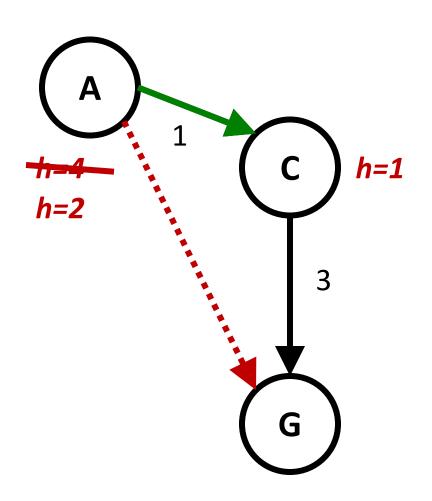
State space graph



Search tree



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)

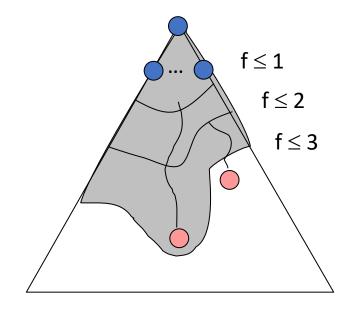
- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

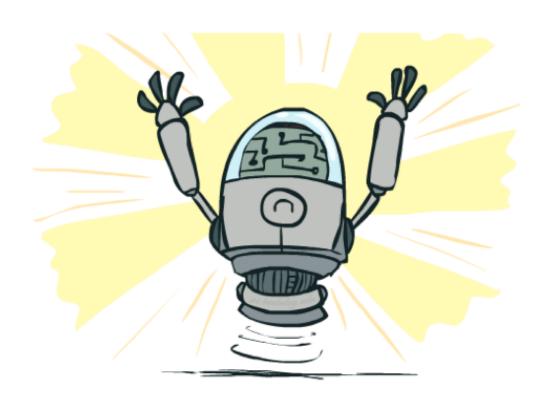
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal



Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



A* Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure

fringe \leftarrow Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow Remove-front(fringe)

if Goal-test(problem, state[node]) then return node

for child-node in expand(state[node], problem) do

fringe \leftarrow Insert(child-node, fringe)

end

end
```


Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```

