
Artificial
Intelligence

Uninformed Search

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class

• HW 0 is due tonight (from last lecture and Chp 2 in Russell/Norvig).

• PA 0 is due tomorrow Friday, Jan 22

• PA 1 is released. You should start on the project now.

• No quiz this week (want to get back some HW to you first).

Announcements

2

Learning Objectives for Today

• More on Reflex and other agents

• Define a search problem

• Uninformed Search Methods:
• Depth-first search
• Breadth-first search
• Iterative Deeping Search
• Uniform-Cost search

3
Figure from Berkley AI

Reflex Agents

Reflex agents:
• Choose action based on current percept (and

maybe memory)
• May have memory or a model of the world's

current state
• Do not consider the future consequences of their

actions
• Summary: They consider how the world IS right

now.

4
Figure from Berkley AI

Question: Can a reflex agent be rational?

Video of Reflex Agent that is Optimal

5
Figure from Berkley AI

Question: Can a reflex agent be rational?

Strategy: Move towards the nearest food pellet

Reflex Agent in a Different Environment

6
Figure from Berkley AI

• Planning agents:
§ Ask "what if"
§ Decisions based on (hypothesized)

consequences of actions
§ Must have a model of how the world

evolves in response to actions
§ Must formulate a goal (test)
§ Consider how the world WOULD BE

Planning Agents

• Optimal vs. complete planning

7

• Planning vs replanning

Much of this slide from Berkley AI

Replanning in Pacman

8

After eating each dot, plan again (replan) on how to get to the nearest dot.

Question: Does this agent act rationally/optimally?
Much of this slide from Berkley AI

Complete Planning

9

Construct a global plan
to get all the dots.
Evaluate all plans and
pick the optimal plan.

Question: Is this really an option generally speaking?
Much of this slide from Berkley AI

A search problem consists of:

Search Problems

10

• A state space

• A successor function
(with actions, costs)

“N”, 1.0

“E”, 1.0

• A start state and a goal test

A solution is a sequence of actions (a plan) which transforms the start state to a
goal state.

Much of this slide from Berkley AI

Search Problems are Models

11

Models are discrete approximations of the real world.

Much of this slide from Berkley AI

Example: Traveling in Romania

12

State space:
• Cities

Successor function:
• Roads connecting adjacent

city with cost = distance

Start state:
• Arad

Goal test:
• Is state == Bucharest

Solution: How do we solve this problem?
Much of this slide from Berkley AI and Russell/Norvig

What is a State Space?

13

Problem: Pathing

A search state keeps only the details needed for planning (abstraction)

The world state includes every last detail of the environment

States:

Actions:

Successor:
Goal Test:

(x,y) location
NSEW

Update location
(x,y) == END

Problem: Eat All Dots
States:

Actions:

Successor:
Goal Test:

(x,y) , dots (booleans)
NSEW

Update location and dots
No dots (all false)

Much of this slide from Berkley AI

World State:

State Space Size?

14

How many world states?

Agent position:
Food:

Ghost positions:

Agent facing:

120

30

12
NSEW

120 x 230 x 122 x 4

States for pathing?
120

States for eat-all-the-dots?
120 x 230 = 128,849,018,880

Much of this slide from Berkley AI

Quiz: Safe Passage

15

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?

• agent position
• dot booleans
• power pellet booleans
• remaining scared time

Much of this slide from Berkley AI

State Space Graph

16

• State space graph: A mathematical
representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Much of this slide from Berkley AI

Search Trees

17

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Much of this slide from Berkley AI

State Space Graph vs. Search Trees

18

We construct both on demand and we construct as little as possible.

Each NODE in the search tree is an entire PATH in the state space graph.

Much of this slide from Berkley AI

Quiz: State Space Graphs vs. Search Tree

19

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Slide from Russell/Norvig

Tree Search: Example with Romania

20Slide from Russell/Norvig

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

Slide from Russell/Norvig

General Tree Search

22

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?
Slide from Russell/Norvig

Depth-First Search (DFS)

23Much of this slide from Berkley AI

DFS

24

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Much of this slide from Berkley AI

Search Algorithm Properties

25

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Much of this slide from Berkley AI
and Russell/Norvig

DFS Properties

26

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent

cycles (more later)

• Is it optimal?
• No, it finds the “leftmost” solution,

regardless of depth or cost

Much of this slide from Berkley AI
and Russell/Norvig

Breadth-First Properties

Much of this slide from Berkley AI

BFS Properties

28

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists, so yes!

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Much of this slide from Berkley AI
and Russell/Norvig

Quiz: DFS vs BFS

• When will BFS outperform DFS?

• When will DFS outperform BFS?

Visualize Search

DFS BFS

Iterative Deeping Search (IDS)

…
b

• Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution…
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• Generally, most work happens in the lowest

level searched, so not so bad!

Much of this slide from Berkley AI
and Russell/Norvig

Cost-Sensitive Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Much of this slide from Berkley AI
and Russell/Norvig

Uniform Cost Search (UCS)

Much of this slide from Berkley AI
and Russell/Norvig

…

• What nodes does UCS expand?
• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/e)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal?
• Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

Uniform Cost Issues

Much of this slide from Berkley AI
and Russell/Norvig

• Remember: UCS explores increasing cost
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

Quiz: Which Search Algorithm is this?

Quiz: Which Search Algorithm is this?

Quiz: Which Search Algorithm is this?

Quiz: Which Search Algorithm is this?

Differences are only in Fringe Management

Much of this slide from Berkley AI
and Russell/Norvig

• All these search algorithms are the
same except for fringe strategies
• Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)
• Practically, for DFS and BFS, you can

avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues
• Can even code one implementation that

takes a variable queuing object

• HW 0 is due tonight.

• HW 0.5 is coming soon (instead of the quiz)

• PA 1 is released. You should start on the project now.

For Next Time

40

