
Artificial Intelligence

CS 444 – Spring 2020
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Game Playing (Adversarial Search)
Lecture 7

Announcements

• PA1 Due tomorrow (Feb 5). Turn in via canvas.
• First exam is next Thursday (Feb 13)
• Last time we discussed CSP:
• Backtracking search
• Least Constraining Value
• Min-Conflicts

Hill Climbing Quiz

• Starting from X, where do you end up?
• Starting from Y, where do you end up?
• Starting from Z, where do you end up?

Outline for Today
• Games vs Search Problems
• Perfect Play
• Minimax Decision
• Alpha-Beta Pruning

• Games of Imperfect Information
• Game Playing Summary

Game Playing – Adversarial Search
Search in a multi-agent, competitive environment

Mathematical game theory treats any multi-agent environment as a
game, with possibly co-operative behaviors (study of economies)

Most games studied in AI:
deterministic, turn-taking, two-player, zero-sum games of perfect
information

Deterministic chance

Perfect information Chess, checkers, go,
othello

Backgammon, monopoly

Imperfect information Batteship, blind tictactoe Bridge, poker, scrabble

Game Playing – Adversarial Search

Zero-sum: utilities of the two players sum to 0 (no win-win)
Deterministic: precise rules with known outcomes
Perfect information: fully observable
Search algorithms designed for such games make use of interesting general
techniques (meta-heuristics) such as evaluation functions, search pruning and
more.

However, games are to AI what grand prix racing is to automobile design.

deterministic, turn-taking, two-player, zero-sum games of perfect information

Our objective: study the three main adversarial search algorithms [minimax,
alpha-beta pruning, and expectiminimax] and meta-heuristics they employ

Game Playing as a Search Problem

Two turn-taking
agents in a zero-sum
game: Max (starts
game) and Min

Max’s goal is to
maximize it utility.
Min’s goal is to
minimize Max’s
utility

Game Playing as a Search Problem
Formal definition of a game as a search problem:
ØS0 ← initial state that specifies how game starts
ØPLAYER(s) ← which player has move in state s
ØACTIONS(s) ← returns set of legal moves in state s
ØRESULT(s; a) ← transition model that denes result of an action a on a state s
ØTERMINAL-TEST(s) ← true on states that are game ends, false otherwise
ØUTILITY(s; p) ← utility/objective function assigns a numeric value for

game that ends in terminal state s with player p

Concept of game/search tree valid here:
Chess: 35 moves per player → branching factor b = 35
Ends at typically 50 moves per player → m = 100
Search tree has 35100 ≈ 1040 distinct nodes !

Game Playing as a Search Problem
Concept of game/search tree valid here:

Chess: 35 moves per player → branching factor b = 35
Ends at typically 50 moves → m = 100
Search tree has 35100 ≈ 1040 distinct nodes !

How to work with this?
• Pruning: how to ignore portions of the tree without impacting strategy
• Evaluation function: estimate utility of a state without a complete

search

Some games have search trees that are too big:
• Time limits ⟹ unlikely to find goal, must approximate
• Many ”tricks” (meta-heuristics) employed to look ahead

Game Tree (two-player, deterministic, turns)

Minimax Decisions
Perfect play for deterministic, perfect-information games

Idea: Choose move to position with the highest minimax value = best
achievable payoff against best play
Simple, 1 ply game

Minimax-Value Algorithm
function Minimax-Value(state) returns minimax-value/utility

if Terminal-Test(state) then return Utility(state)
if NEXT-AGENT is MAX then return Max-VALUE(state)
if NEXT-AGENT is MIN then return Min-Value(State)

function Max-Value(state) returns a utility value
v ← - ∞
for each successor of state

v ← Max(v, MiniMax-Value(successor))
return v

function Min-Value(state) returns a utility value
v ← ∞
for each successor of state

Do v ← Min(v, MiniMax-Value(successor))
return v

Tracing on the Board
Trace minimax-value on 2-ply game below updating your v’s

A

B

E(4)

C D

F(5) G(6)

H I

J(3) K(8)

L(3) M(4) N(7) O(9)

Minimax Decision Algorithm
function Minimax-Decision(state) returns an action

Return argmaxa ∈ actionsMin-VALUE (RESULT(state,a)

function Max-Value(state) returns a utility value
If Terminal-Test(state) then return Utility(state)
v ← - ∞
for a in ACTIONS(state)

Do v ← Max(v, Min-Value(RESULT(s,a)))
return v

function Min-Value(state) returns a utility value
If Terminal-Test(state) then return Utility(state)
v ← ∞
for a in ACTIONS(state)

Do v ← Min(v, MAX-Value(RESULT(s,a)))
return v

Properties of Minimax

Complete? Yes, if the tree is finite (chess has specific rules for this)

Optimal? Yes, against an optimal opponent. Otherwise?

Otherwise, even better Example?

Time complexity? O(bm)

Space complexity? O(bm) (depth-first exploration)

Chess: b ≈ 35 m ≈ 100. Exact solution completely intractable infeasible

Do we need to explore every path?

Game Trees

In realistic games, cannot explore the full game tree.

Number of game states MiniMax explores is exponential in the depth
of the tree.

What to do?

Remove from consideration entire subtrees (pruning)
Find a way not to have to reach/explore the leaves to determine
the value of a state

Remove from Consideration Entire Subtrees -- 𝛼 - 𝛽 Pruning Example

Remove from Consideration Entire Subtrees -- 𝛼 - 𝛽 Pruning Example

Remove from Consideration Entire Subtrees -- 𝛼 - 𝛽 Pruning Example

Remove from Consideration Entire Subtrees -- 𝛼 - 𝛽 Pruning Example

Remove from Consideration Entire Subtrees -- 𝛼 - 𝛽 Pruning Example

𝛼 - 𝛽 Pruning Example

𝛼 is the best value (to MAX)
found so far off the current
path.
If V is worse than 𝛼, MAX will
avoid it ⟹ prune that
branch.
Similarity, 𝛽 for MIN

𝛼 : MAX’s best option on path to root
𝛽: MIN’s best option on path to root

Pruning by Maintaining 𝛼 and 𝛽
function Alpha-Beta-Value(state, 𝛼, 𝛽) returns value/utility

If Terminal-Test(state) then return Utility(state)
If NEXT AGENT is MAX then return MAX-VALUE(state, 𝛼, 𝛽)
If NEXT AGENT is MIN then return Min-Value(State 𝛼, 𝛽)

function Max-Value(state 𝛼, 𝛽) returns a utility value
v ← - ∞
for each successor of state

v ← Max(v, Alpha-Beta-Value(successor 𝛼, 𝛽))
if v ≥ 𝛽 then return v
𝛼 ← MAX(𝛼, v)

return v
function Min-Value(state, 𝛼, 𝛽) returns a utility value

v ← ∞
for each successor of state

v ← Alpha-Beta-Value(successor 𝛼, 𝛽))
If v ≤ 𝛼 then return v
𝛽← MIN(𝛽, v)

return v

Tracing on the Board
Trace alpha/beta on game below

A

B

E(4)

C D

F(5) G(6)

H I

J(3) K(8)

L(3) M(4) N(7) O(9)

Properties of 𝛼 -𝛽
Complete? Yes, if the tree is finite

Optimal? Yes, although intermediate nodes may have wrong values
when subtrees are pruned

Time complexity? O(bm/2) ⟹ doubles solvable depth; with “perfect ordering”

With random ordering, time complexity ≈ O(b3m/4)

Unfortunately, chess has 3550 so, it is still intractable.

Games of Imperfect Information

E.g., card games, where opponent’s initial cards are unknown

Typically, we can calculate a probability for each possible deal

Seems just like having one dig dice roll at the beginning of the game
Idea:

Compute the minimax value of each action in each deal

GIB (best bridge program) approximates this idea by:
1. Generating 100 deals consistent with bidding information
2. Picking the action that wins most tricks (turns) on average

Special case: if an action is optimal for all deals, it’s optimal

Game Playing Summary

Games are fun to work on! (and dangerously obsessive)

Illustrate several important points about AI

• Perfection is usually unattainable ⟹ most approximate
• Good idea to think about what to think about
• Uncertainty constrains the assignment of values to

states
• Optimal decisions depend on information state, not the

real state
• Domain-specific tricks can be generatlized to meta-

heuristics of possible relevance for search of

