
Artificial Intelligence

CS 444 – Spring 2020
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Local and Randomized/Stochastic Search
Lecture 6

Outline for Today
• Search in Unobservable or Large Environments
• Hill Climbing
• Discrete Spaces
• Continuous spaces
• Premature convergence

Randomization in Local Search
• Random-restart/multi-start
• Iterated Local Search
• Memory-based search/optimization
• Tabu search
• Tree-guided search
• Evolutionary Algorithms (EA)
• Genetic Algorithms (GAs)

Summary of Uninformed Search Algorithms
• Graph search algorithms conduct systematic

search
• Assume state space is finite and can fit in

memory (not always the case)
• Environment may not even be observable
• No model of the environment available

• Local Search: how to find solutions quickly with only a local view of the space

• Randomized Search: Address premature convergence of local search

• Fundamental to local search: iterative improvement mechanism

Iterative Improvement Mechanism in Local Search

Then state space = set of "complete" configurations
Find the optimal configuration (explicit constraints or objective/fitness function)

In many optimization problems, path is irrelevant; the goal state itself is the
solution. Examples? Traveling salesman (TSP), n-queens, circuit layout (VLSI),

factory floor design, protein structure prediction.

Iterative improvement: keep a single "current" state, try to improve it
that is, no memory of what has been found so far
hence (memory-less) local search

Iterative refers to iterating between states
Improvement refers to later states improving some objective/goal function or
satisfying more of the specified constraints over earlier states

Example: Traveling Salesman Problem (TSP)
Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of the optimal solution very quickly
(even with thousands of cities)

Example n-queens
Put n queens on an n x n board with no two queens on the same row, column,
or diagonal.
Move a queen to reduce number of conflicts.

Local search techniques can solve this problem almost instantaneously for very
large n (n = 1 million) (recall an 8x8 board has 88 states (≈ 17 million states).

(Simple) Hill Climbing
"Like climbing Everest in thick fog with amnesia".

function Hill-Climbing(problem) returns a state (local optimum)
inputs: problem, a problem
local variables: current (a node)

neighbor (a node)
current ← MAKE-NODE(INITIAL-STATE [problem])
loop do

neighbor ← a successor of current
If Value[neighbor] is not better than Value[current]

then return State ← [current]
current ← neighbor

end

Hill Climbing for Discrete State Spaces

What if neighbors cannot be enumerated? What if state space is continuous?

How is the neighbor of a current state generated?

• Stochastic hill climbing: generate neighbor at random (continuous spaces,
perform a small perturbation to generate neighbor)
• Gradient-based variants: for continuous state spaces
• (Conjugate) Gradient Descent/Ascent
• Other numerical optimization algorithms (beyond scope of CS 444)

If state space is discrete and neighbor list is finite, all neighbors of a current
state can be considered:
• Steepest hill climbing: compare best neighbor to current
• First-choice hill climbers use the first choice that is improves on current

Varies with approach…

Hill Climbing and Premature Convergence
Why is simple hill climbing an its variants realizations of local search?
Useful to consider state space landscape

• Simple hill climbing
converges to a local
optimum
• When is this behavior

sufficient to locate
the goal = global
optimum?

• How can we improve
its behavior on non-
convex landscapes?

Challenging Nonconvex Fitness Landscapes

Ken Dill (funnel landscape of the energy landscape of a protein)

Three General Mechanisms to Avoid Premature Convergence
Randomization:
• Random/multi restart allows embarrassing parallelization
• Iterated Local Search (ILS)

Memory-less randomized/stochastic search optimization:
Monte Carlo search
Simulated Annealing Monte Carlo

Memory-based randomized search:
• Memory via search structure

• List: tabu search
• Tree-/graph based search

• Memory via population
• Evolutionary search strategies
• Evolutionary Algorithms (Eas)
• Genetic Algorithms (GA)

Random-restart Hill Climbers

Repeated restarts give a global view of the state space (instead of just
the local one provided by each climber).

Drawback? The hill climbers do not talk to one another.

Idea: Launch multiple hill climbers from different initial states/configurations.

Bonus: Amenable to embarrassing parallelization.

Take-away: It is often better to spend CPU time exploring the space, then carefully
optimizing from an initial condition.

Why?

Escaping a local maximum/minimum?

How to escape from a local minimum?

Make a random move – this is what we call Iterated Local Search (ILS)

Iterated Local Search
Start at a given initial state

Until some budget is exhausted or other termination criterion is reached.
Iterate between two types of moves:
• Local improvement Go from current state to a neighboring local optimum
• Local randomization Modify some variable of a local optimum to get a worse,

adjacent state (not necessarily a neighbor

ILS is also known as Basin Hopping (BH)
How to design effective local randomization strategies?
• Domain-specific
• Introduce enough change but not too much change

Olson, Hashmi, Molloy, Shehu. Basin Hopping as a General and Versatile Optimization Framework for
the Characterization of Biological Macromolecules. Advances in Artificial Intelligence Journal, 2012
(special issue on AI Applications in Biomedicine).

Monto Carlo (MC) Search
While hill climbing is monotonic (strictly improvements), MC allows hopping to
a worse neighbor. Temperature controls how often.

function MC(problem, T) returns a state (local optimum)
Inputs: problem, a problem

T, temperature
Local variables: current (a node)

next (a node)
current ← MAKE-NODE(INITIAL-STATE [problem])
for t ← 1 to ∞ do

if T = 0 then return current
next ← RANDOM-SUCCESSOR(current)
𝝙E ← VALUE[next] – VALUE[current]
if 𝝙E > 0 current ← next
else current ← next with probability e𝝙E /T

end

Simulated Annealing Monte Carlo (SA-MC)

Idea: escape local
maxima/minima
allowing some bad
moves, but,
gradually decrease
their size and
frequency

function SA(problem, T) returns a state (local optimum)
Inputs: problem, a problem

schedule, a mapping from time to "temperature"
Local variables: current (a node)

next (a node)
T, a "temperature" controlling prob of bad

move
current ← MAKE-NODE(INITIAL-STATE [problem])
for t ← 1 to ∞ do

T ← schedule[t]
if T = 0 then return current
next ← RANDOM-SUCCESSOR(current)
𝝙E ← VALUE[next] – VALUE[current]
if 𝝙E > 0 current ← next
else current ← next with probability e𝝙E /T

end

Concepts of Exploiting Temperature
How should a temperature schedule be constructed?

Fixed, proportional cooling schedule
Dynamic, adaptive (popular in tempering, chemistry, material science, robotics)

Other way to use temperature:
Diversify restarts (each can use a different temperature schedule)
Threads exchange states (known as replica exchange, very popular in physical and
chemistry)

At fixed "temperature" T, the state occupation probability
reaches the Boltzman distribution
(https://en.wikipedia.org/wiki/Boltzmann_distribution).

𝑝 𝑥 = 𝛼𝑒
!(#)
%&

Sometimes this is called Metropolis Monte Carlo
(MC), devised by Nicholas Metropolis (and some
other Manhattan scientists) in 1953 that allow them
to model the "states" of systems using computers.

https://en.wikipedia.org/wiki/Boltzmann_distribution

Combination Strategies
ILS + MC ← Monte Carlo with minimization

Very popular in biomolecular structure/energy optimization
Characterizing Energy Landscapes of Peptides using a Combination of Stochastic
Algorithms. Didier Devaurs, Kevin Molloy, Marc Vaisset, Amarda Shehu, Thierry Siméon,
and Juan Cortés. IEEE Transactions in NanoBioScience, 2015.

Probabilistic Search and Energy Guidance for Biased Decoy Sampling in Ab-initio Protein
Structure Prediction. Molloy et al. IEEE Trans in Computational Biology and Bioinformatics, 2013.

Idea: Keep states
generated so far
in a tree or graph.
Centralizes
redundant local
searches.
Integrate local
searches in a
global search
structure.

Tabu Search

Idea: Avoid generating same state

Tabu: list of states generated so far

Tabu list may also include set of moves that yield redundant states

Tabu considered an evolutionary search strategy

More general concept: hall of fame

Local Beam Search

Idea: Don’t keep just a single state, keep k states.

Not the same a k searches in parallel!
Search that finds good states recruits other searches to join them

Issues/Problems?

Generate k starting states at random.
REPEAT

For each state k generate a successor state
Pick the best k states from the set of 2k states (the originals and the
"offspring"

Quite often, all k states end up on some local "hill"
Solution: choose k successors randomly (biased towards
"good" states". This is call Monte Carlo sampling
(robotics/computer vision use this in particle filters).

Memory-based Search via Population: Evolutionary Computation

This is a subfield of AI and is very popular

Idea: Mimic natural selection to arrive at solutions that have a beter
chance of including the global optimum than local search. Many
strategies exist.

Genetic Algorithms (GAs)
Similar to stochastic beam search + generate successors from pairs of
states.

Typically new states are added to old states and the selection process
continues (only the strong survive).

States representing the 8 queens problem

EA Summary

EAs currently some of the most powerful (randomize) solves for the toughest
academic and industrial optimization problems.

Some EAs methods look similar to what we have already discussed. This is true:
Example: ILS is just 1+1 EA

Awareness of developments in different communities inspires new strategies or
combination of strategies for more powerful randomized search algorithms.

Summary

Local search involves moving from "state" to "state" through a successor
function and, in general, in a memory-less way.

We discussed:
• Simple Hill Climbers (strictly better moves)
• Hill climbers that escape local minimum/maximums (iterated local

search/random restarts)
• Incorporate "temperature" to allow some bad moves to escape local minimum

(potentially with a "cooling" schedule")
• Local beam search (close to an EA)
• Evolutionary algorithms for successor functions and selection

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Problem A* Search Map out the tree that A* would use utilizing
the straight line distance heuristic for a trip
from Sibiu to Bucharest.

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu
Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Problem 4.1
Give the name of the algorithm that results from each of the
following special cases: local beam search with k = 1

