
Artificial Intelligence

CS 444 – Spring 2020
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Constraint Satisfaction Problems (CSPs)

Outline
• Examples of CSP

• Arc Consistency

• Example Problem

Constraint Satisfaction Problems (CSPs)

CSPs:

Standard Search
Problem:

State is a "black box" – any old data structure that supports
a goal test, eval, successors, etc.

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard
search algorithms (avoids coming up with problem specific heuristics).

State is defined by variables Xi with values from domain Di.
Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

Example: Map Coloring

Variables:
WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}

Constraints: adjacent regions must have different colors.
e.g. WA ≠ NT (if language allows this) or
(WA, NT) ∈ { (red, green), (red, blue), (green, red), …}

Example: Map Coloring

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green)

Variables:
WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}

Constraint Graph
Binary CSP: each constraint relates at
most two variables
Constraint graph: nodes are variables,
arc show constraints

General-purpose CSP algorithms
use the graph structure to speed up
search (e.g., Tasmania is an
independent subproblem)

Example: Cryptarithmetic

• Variables: F T U W R O X1 X2 X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• alldiff(F, T, U, W, R, O)
• O + O = R + 10 * X1

• W + W + X1 = U + 100 * X2

• Etc..

Global constraints involves an arbitrary
number of variables (not necessarily all
variables).
If m variables are involved, and I have n
remaining values, if m > n, this
constraint can not be satisfied.

Constraint Propagation
Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection of ALL failures

BUT: NT and SA cannot both be blue!
Constraint propagation enforces constraints locally at each step (over and over), and
does not "chase" arc consistency
When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may
also become inconsistent (e.g., NT and SA).

Arc Consistency
Simplest form of constraint propagation makes each arc consistent

X → Y is consistent iff for every value of x of X there is some allowed value y of Y

Arc Consistency
Simplest form of constraint propagation makes each arc consistent

X → Y is consistent iff for every value of x of X there is some allowed value y of Y

Arc Consistency
Simplest form of constraint propagation makes each arc consistent

X → Y is consistent iff for every value of x of X there is some allowed value y of Y

If a variable loses a value, its neighbors in the constraint graph need to be
rechecked

Maintaining Arc Consistency

If a variable loses a value, its neighbors in the constraint graph need to be rechecked.

Can be preprocessing or run after each assignment (INFERENCE) in the backtracking
search algorithm

Recursively propagates constraints when changes are made to domains of variables

This recursive constraint propagation approach detects failure earlier than forward
checking

Algorithm: Maintaining arc consistency (MAC), also known as AC-3

Tree-structured CSPs

Theorem: if the constraint graph has no cycles (so, it’s a tree), the CSP can be solved
in O(nd2) time
Compare to general CSPs, where worst-case is O(dn).

This property also applies to logical and probabilistic reasoning:
An important example of the relation between syntactic restrictions and the
complexity of reasoning.

Algorithm for Tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes
it in the ordering.

2. For j from n down to 2, apply Remove-Inconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent (Xj)

Nearly Tree-structured CSPs

Conditioning:
instantiate a
variable, prune its
neighbor's domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

Cutset size c ⟹ runtime O(dc · (n – c)d2), very fast for small c

Building crossword puzzles

Consider the problem of constructing (not
solving) a crossword puzzle. You are given a
grid (like the one to the right), and a dictionary
of allowable words.

How would you approach this problem as a search
problem? (like what we did w/uninformed search)

As a CSP, what would you constraint. The letters
or the words, and why.

In class work

6.2 Consider the problem of placing k knights on a n x n chessboard such
that no two nights are attacking each other, and that k ≤ n2.

a) Choose a CSP formulation. What are the variables?
b) What are the possible values of each variable?
c) What sets of variables are constrained and how?

In class work

6.6. Show how a single ternary constraint such as: A + B = C can be turned
into 3 binary constraints using an auxiliary variable. You may assume
a finite domain for all variables. Hint: Consider a new variable that
takes on values that are pairs of other values, and consider constraints
such as “X is the first element of the pair Y”.

