
Artificial Intelligence

CS 444 – Spring 2019
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Informed Search
Informed (Heuristic) Search and Admissible Heuristics

Lecture 5



Outline for Today
• Searching, is there a better way?

• Setup for Project 1



Summary of Uninformed Search Algorithms

Criterion BFS DFS DLS IDS
Complete? Yes No Yes if dl ≥ d Yes
Time bd+1 bm bdl bd

Space bd+1 bm bdl bd
Optimal? Yes* No No Yes*



Method for Uninformed Searches
Insight: All covered graph-search algorithms follow similar template:
• “Maintain" a set of explored vertices S and a set of unexplored vertices V - S
• “Grow" S by exploring edges with exactly one endpoint in S and the other in V - S
• What do we actually store in the fringe?

Implication: similar template ! reusable code
Data structure F for the fringe: order vertices are extracted from V - S 
distinguishes
• search algorithms from one another
• DFS: Take edge from vertex discovered most recently (F is a stack)
• BFS: Take edge from vertex discovered least recently (F is a queue)



Informed Search Algorithms
Find a least-cost/shortest path from initial vertex to goal vertex.  These exploit 
cost/weights in the state-space graph.
Informed graph search algorithms:
• Dijkstra’s [1959]
• Uniform-cost Search (variant of Dijkstra’s)
• Best-First Search [Pearl 1984]
• A* Search [Hart, Nilsson, Raphael, 1968]
• B*Search [Berliner 1979]
• D* Search [Stenz 1994]
We are going to skip cover cases with negative weights.



Finding Shortest Paths in Weighted Graphs
The weight of a path p = (v1, v2, … vk) is the sum of the weights of the corresponding edges: 
w(p) = ∑k

i=1 w(vi-1,vi).
The shortest path weight from a vertex u to a vertex v is:

! ", $ = &min * + : + = ",… , $ ./ + 01.232
∞ 53ℎ07*.20

• A shortest path from u to v is any path p with weight ! ", $
• The tree of shortest paths is a spanning tree of G = (V, E), where the path from its root, the 

source vertex s, to any vertex u ∈ V is the shortest path s↝ u in G.

• Tree grows from S to V – S
• Start vertex first to be extract from V-S and 

added to S
• As S grows (V – S shrinks), tree grows
• Tree grows in iterations, one vertex 

extracted from V - S at a time



Essence of all Informed Search Algorithms
All you need to remember about informed search algorithms
• Associate a(n attachment) cost d[v] with each vertex v
• F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
• Until F is empty, one vertex extracted from F at a time
• Can terminate earlier? When? How does it relate to goal?

• v extracted from F @ some iteration is one with lowest cost among all those in F
• ... so, vertices extracted from F in order of their costs

• When v extracted from F:
• v has been “removed” from V - S and “added” to S
• get to reach/see v's neighbors and possibly update their costs



Essence of all Informed Search Algorithms
The rest are details, such as:
• What should d[v] be? There are options...
• backward cost (cost of s↝ v)
• forward cost (estimate of cost of v↝ g)
• back+forward cost (estimate of s↝ g through v)

Which do I choose? This is how to you end up with different search algorithms



Dijkstra’s Shortest Path Algorithm
Dijkstra extracts vertices from the frontier (adds to S) in order of their costs

Claim: When a vertex v is extracted from the fringe F (i.e., added to S), the shortest path from s
to v has been found. 

Proof: by induction on |S| (base case |S| =1 is trivial).  Assume invariant holds for |S| = k > 1

• Let v be vertex about to be extracted from the fringe (added to S), so, has lowest backwards 
cost

Nonnegative weights! " ≥ $ %& + $ (, *
≥ + ( + $ (, *
≥ + *
≥ +[-]

• Last time d[v] updated when parent u extracted from 
fringe

• When d[v] is the lowest in the fringe, should we extract 
v or wait?

• Could d[v] get lower later through some other vertex y 
in the fringe?

Inductive hypothesis

Dijkstra chose v over y
Definition of d[y]



Some Quotes from Dijkstra
The question of whether computers can think is like 
the questions of whether submarines can swim.

Edsger Dijkstra 1930 - 2002



Dijkstra’s Shortest in Pseudocode
Fringe F is a priority queue/min-heap
Arrays: d stores attachments (backwards cost), ![v] stores parent
S only shown for clarity (is not required)

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

If d[v] > d[u] + w(u,v) then
d[v] ← d[u] + w(u,v)
![v] ← u

Dijkstra(G, s, w)
1:
2:
3:
4:
5:
6:
7:
8:
9:

1:
2:
3:

Relax(u, v, w)



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞
B 0 -
C ∞
D ∞
E ∞
F ∞

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

A

B C D

E F

3

5

5
1

2

4

1

5

u = B



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B
B 0 - 0 -
C ∞ 5 B
D ∞ ∞
E ∞ ∞
F ∞ ∞

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {A(3), C(5)}

A

B C D

E F

3

5

5
1

2

4

1

5

s = B

u = B



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B 3 B
B 0 - 0 - 0 -
C ∞ 5 C 4 A
D ∞ ∞ ∞
E ∞ ∞ ∞
F ∞ ∞ ∞

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {C(4)}

A

B C D

E F

3

5

5
1

2

4

1

5

u = Au = B



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B 3 B 3 B
B 0 - 0 - 0 - 0 -
C ∞ 5 C 4 A 4 A
D ∞ ∞ ∞ 6 C
E ∞ ∞ ∞ 8 E
F ∞ ∞ ∞ ∞

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {6(D), 8(E)}

A

B C D

E F

3

5

5
1

2

4

1

5

u = Au = B u = C



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B 3 B 3 B 3 B
B 0 - 0 - 0 - 0 - 0 -
C ∞ 5 C 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C
E ∞ ∞ ∞ 8 E 8 E
F ∞ ∞ ∞ ∞ 11 F

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {8(E),11(F)}

A

B C D

E F

3

5

5
1

2

4

1

5

u = Au = B u = C u = D



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B 3 B 3 B 3 B 3 B
B 0 - 0 - 0 - 0 - 0 - 0 -
C ∞ 5 C 4 A 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C 6 C
E ∞ ∞ ∞ 8 E 8 E 8 E
F ∞ ∞ ∞ ∞ 11 F 9 F

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {9(F)}

A

B C D

E F

3

5

5
1

2

4

1

5

u = Au = B u = C u = D u = E



Dijkstra’s Shortest in Pseudocode

Init P 1 P 2 P  3 P 4 P 5 P 6
Vert d ! d ! d ! d ! d ! d ! d !
A ∞ 3 B 3 B 3 B 3 B 3 B 3 B
B 0 - 0 - 0 - 0 - 0 - 0 - 0 -
C ∞ 5 C 4 A 4 A 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C 6 C 6 C
E ∞ ∞ ∞ 8 E 8 E 8 E 8 E
F ∞ ∞ ∞ ∞ 11 F 9 E 9 E

F ← s, s ← ∅
d[v] ← ∞ for all v ∈ V
d[s] ← 0
while F ≠ ∅ do

u ← Extract-Min(F)
S ← S ∪ {u}
for each v ∈ Adj(u) do

F ← F ∪ {v} 
Relax (u,v,w)

F = {}

A

B C D

E F

3

5

5
1

2

4

1

5

u = Au = B u = C u = D u = E u = F



Greedy Best-first Search in Action



Greedy Best-first Search in Action



Greedy Best-first Search in Action



Greedy Best-first Search in Action



Greedy Best-first Search in Action

Optimal? No, since we can get to Bucharest Rimnicu Vilcea and Pitesti.



Summary of Greedy Best-first Search
Complete?: Complete in finite space with repeated state checking

Time? O(bm), but a good heuristic can give dramatic improvement

Space? O(bm) – keeps all nodes in memory

Optimal? No



A* Search 
Idea: avoid expanding paths that are already expensive.
Evaluation function: f(v) = g(v) + h(v):
Combines Dijkstra’s/uniform cost with greedy best-first search
• g(v) = (actual) cost to reach v from s
• h(v) = estimated lowest cost from v to goal
• f(v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in the min-heap by f[v].

A* is both complete and optimal provided h satisfies certain conditions:
• For searching in a tree: admissible/optimistic
• For searching in a graph: consistent (which implies admissibility)



Dijkstra’s Shortest Path Algorithm
What do we want from f[v]?
• Not to overestimate cost of path from source to goal that goes through v

Since g[v] is actual cost from s to v, this “do not overestimate” criterion is for the forward cost 
heuristic, h[v]
A* searches uses an admissible/optimistic heuristic
i.e., h(v) ≤ h*(v) where h*(v) is the true cost from v
(Also require h(v) ≥ 0, so h(G) = 0 for any goal G).
Example of an admissible heuristic: hsld(v) never overestimates the actual road distance.



A* Search in Action



A* Search in Action



A* Search in Action



A* Search in Action



A* Search in Action



A* Search in Action



Optimality of A*

Tree-search version of A* is optimal if h is admissible
• Does not overestimate lowest cost from a vertex to the goal

Graph-search version additionally requires that h be consistent
• Estimated cost of reaching goal from a vertex n is not greater than cost to go from n to its 

successors and then the cost from them to the goal.
• Consistency is stronger, and it implies admissibility

Need to show:
Lemma 1: If h is consistent, then values of f along any path are nondecreasing
Lemma 2: If h is admissible, whenever A* selects a vertex v for expansion (extracts from the 
fringe), optimal path to v has been found



Proof of Lemma 1: 
Consistency -> Nondecreasing f along a Path

A heuristic is consistent if:
ℎ " ≤ $ ", &, "' + ℎ("')

If h is consistent, we have:
+ "' = - "' + ℎ "'

= - " + $ ", &, "' + ℎ "'
≥ - " + ℎ "

i.e., f(n) is nondecreasing along any path.



Proof of Lemma 2: Consistency -> Admissibility

h(n): does not overestimate cost of lowest-cost path from n to g
• ℎ " ≤ $(", ')

On the other hand
• ℎ " ≤ ) ", *, "+ + ℎ("+)
AND
• ℎ "′ ≤ $("′, ')

So
• ℎ " ≤ ) ", *, "+ + $("′, ')



Admissible Heuristics

E.g., for the 8-puzzle
h1(v) = number of misplaced tiles

h1(S) = 6



A* Performance

Depth (moves in optimal solution) IDS (nodes) A* (nodes)
14 3,473,941
24 54,000,000,000



A* Performance

Depth (moves in optimal solution) IDS (nodes) A* (nodes)
14 3,473,941 539
24 54,000,000,000 39,135



Admissible Heuristics

E.g., for the 8-puzzle
h1(v) = number of misplaced tiles

h1(S) = 6

h2(v) = total Manhattan distance

h2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14 



A* Dominance

Depth (moves in optimal solution) IDS (nodes) A* (nodes) with h1 A*(nodes) with h2
14 3,473,941 539 113
24 54,000,000,000 39,135 1,641

If h2(v) ≥ h1(v) for all v (both admissible)
Then h2 dominates h2 and is better for search

Given any admissible heuristics ha, hb:
h(v) = max(ha(v), hb(v))

Is also admissible and dominates ha and hb.



Technique for Heuristics – Relaxed Problem

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the 
problem.

8 –puzzle:
• H1 – relax the problem so that the pieces can be just placed in their correct position in 1 

move
• H2 – relax the problem so that the pieces can be placed in their correct positions directly 

counting each move (tiles can be moved to any adjacent square, not just where the blank 
space is located)

Key point: the optimal solution cost of the relax problem is no greater than the cost of the 
optimal solution to the real problem.



Summary of A* Search
Complete?: Yes, unless there are infinitely many nodes with f ≤ f(G)

Time? Exponential in [path length x ]

Space? Keeps all generated nodes in memory (worse drawback than time)

Optimal? Yes


