
Artificial Intelligence

CS 444 – Spring 2019
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Search…
Lecture 3

Outline for Today
• Problem-solving agents

• Problem types

Agents and Environments
function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state ← Update-State(state, percept)
if seq is empty then

goal ← Formulate-Goal(state)
problem ← Formulate-Problem(state, goal)
seq ← Search(problem)

action ← Recommendation(seq, state)
seq ← Remainder(seq, state)
return action

Note: this is offline problem solving, solutions executed “eyes closed”.

Example: A trip in Romania
On holiday in Romania, current in Arad.
Flight leaves tomorrow from Bucharest.

Formulate goal: be in Bucharest

Formulate problem:
states: various cities
Actions: drive between cities

Find solution:
Sequence of cities, e.g. Arad,
Sibiu, Fagaras, Bucharest

Problem Types
• Fully-observable, Known, Deterministic → single-state problem

Agent knows exactly which state it will be in; solution is a sequence
of actions that can be executed eyes closed
open loop: no need to sense environment during execution

• Non-observable → conformant problem
Agent may have no idea where it is; solution (if any) is a sequence. Also
known as multi-state problem: agent knows which states it might be in

• Nondeterministic and/or Partially Observable → contingency problem
Percepts provide new information about current state. Solution is a
contingent plan or a policy. Often interleave search, execution. Plans
contain conditional parts based on sensors

Example: Vacuum World
Single-state, start in #5.
Solution? [Right, Suck]

Conformant, start in {1,2,3,4,5,6,7,8}.
Solution? [Right, Suck, Left, Suck]

Formulation of a Problem
1. Initial state(s): the state(s) the agent starts in

2. Action/operators: given any state s, ACTION(s) returns set of actions
that can be executed from s

3. Transition model: maps state-action pairs to states, given a state s
and action a. RESULT(s, a) returns the state that resylts from carrying
out action a on s

4. Goal test determines whether a given state is a goal state (defined
explicitly or via a property).

5. Path cost: computational cost of the execution of the path/plan

1-3 implicitly define state space, which can be encoded as a directed
graph (nodes are states and edges are actions). What is a path in this
graph?

Single-state Problem for Route-Finding
1. Initial state(s): e.g., “In(Arad)”

2. Action/operators: e.g.

ACTION(Arad) = {Arad → Timisoara, Arad → Sibiu, …, Arad → Zerind}
3. Transition model:

RESULT(Arad, Arad → Zerind) = Zerind

4. Goal test:

Explicit e.g. ”In(Bucharest)”

5. Path cost (additive)

e.g. sum of distances, number of actions executed, etc.

c(x, a, y) is the step cost (assumed to be non-negative)

Single-state Problem for Route-Finding
1. Initial state(s): e.g., “In(Arad)”

2. Action/operators: e.g.

ACTION(Arad) = {Arad → Timisoara, Arad → Sibiu, …, Arad → Zerind}
3. Transition model:

RESULT(Arad, Arad → Zerind) = Zerind

4. Goal test:

Explicit e.g. ”In(Bucharest)”

5. Path cost (additive)

e.g. sum of distances, number of actions executed, etc.

c(x, a, y) is the step cost (assumed to be non-negative)

Solution:
A solution is a sequence of actions leading from the initial state to a goal
state.

The process of looking for a solution is called search.

Abstraction: Defining a State Space
Real world is absurdly complex

State space must be abstracted for problem solving
(Abstract state) = set of real states
(Abstact) action = complex combination of real actions.

e.g. Arad → Zerind represents a complex set of possible routes,
detours, rest stops, etc.

(Abstract solution) = set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem.

State Space Graph
State space graph: A mathematical
representation of a search problem
Nodes are (abstracted) world
configuration
Arcs/edges represent successors
(action results)
Goal test is a set of goal nodes
(maybe one)
In a state space graph, each state
occurs only once.

We can rarely build this full graph
in memory, but it’s a useful idea.

Example: Vacuum World Space Graph

States: Integer dirt and robot locations (ignore dirt amounts, etc). Size of state space?
Actions: Left, right, suck, NoOp
Transition model: ([A, dirt], Suck) → [A, clean]
Goal test: No dirt
Path cost: 1 per action (0 for NoOp)

Example: The 8-puzzle

States: Integer location of the tiles. State space size?
Actions: Blank space “moves” (Left, right, up, Down)
Transition model: Given state and action returns resulting state.
Goal test: Do we match the explicit goal state
Path cost: 1 per move (optimal solution is NP-hard !]

Example: Robotic Assembly

States: Real-valued coordinates of the robot joint angles + parts of the object to be
assembled.

Actions: Continuous motions of robot joints

Transition model: state + action yields new state
Goal test: Complete assembly
Path cost: Time to execute

Route-finding and Tour-finding Problems
The vacuum cleaner problem, 8-puzzle (block sliding), 8-queens, and others are
examples of toy, route-finding problems.

Real-world route-finding problems can be found in robot navigation, manipulation,
assembly, airline travel web-planning, and more.

Tour-finding problems are slightly different: “visit every city at least once,
starting and ending in Bucharest.”

Traveling salesperson problem (TSP): find shortest tour that visits each city
exactly once, NP-hard.

Other related, complex problems: packing, scheduling, VLSI layout, protein
folding, protein design.

Searching for Solutions
Choosing states and actions:
• Abstraction: remove unnecessary information from representation,

makes it cheaper to find a solution
Searching for Solutions:
• Operators expand a state: generate new states from present ones
• Fringe or frontier: discovered states to be expanded
• Search strategy: tells which state in fringe set to expand next
Measuring Performance:
• Does it find a solution?
• What is the search cost?
• What is the total cost (path cost + search cost)?

Search trees
A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

State Space Graphs vs Search Trees

We construct both on demand and we construct as little as possible.

State Space Graphs vs Search Trees

Consider the 4-state space graph on the left. How big is it’s search tree?

Lots of repeated structures !!

Repeated States

Can repeated structure be easily avoided. If so, how?

Avoiding Repeated States

function Graph-Search(problem, fringe) returns a solution or failure
closed ← an empty set
fringe ← INSERT(Make-Node(Intitial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node ← Remove-Front(fringe)
If Goal-Test(problem, State[node]) then return node
If State[node] is not in closed then

add State[node] to closed
fringe ← InsertAll(Expand(node, problem), fringe)

Searching with a Search Tree

• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible (why?)

(Discrete) Search Algorithms
Basic idea:
• Offline, simulated exploration of state space by generating successors of

already-explored states (a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution or failure
Initialize the search tree using the initial state of the problem
loop do

if there are no candidates for expansion, then return failure
choose a leaf node for expansion according to strategy
If the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Fundamental Properties of Discrete Search Algorithms

Fundamental to Graph Search/Traversal Algorithms:
• Successor function: generate successors/neighbors and distinguish a goal state

from a non-goal state.
Completeness Goal should not be missed if a path exists.

Efficiency No edge should be traversed more than twice.

Implementation: States vs Nodes

The Expand function creates new
nodes, filling in the various fields
and using the SuccessorFn of
the problem to create the
corresponding states.

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree and include
parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path costs!
• Try to expand as few tree nodes as possible (why?)

General Tree Search

Important insight:
• Any search algorithm constructs a tree, adding to it vertices from state-space

graph G in some order

• G = (V, E) – look at it as split in two: set S on one side and V –S on the path

• Search proceeds as vertices are taken from V-S and added to S

• Search ends when V – S is empty or goal found

• First vertex to be taken from V-S and added to S?

• Next vertex (expansion…)

• Where to keep track of these vertices (fringe/frontier)

General Tree Search

Important ideas:
• Fringe (frontier into V– S/border between S and V – S)
• Expansion (neighbor generate, enables adding to fringe)
• Exploration strategy (what order to grow S?)

Main question:
• Which fringe/frontier nodes to explore/expand next?
• Strategy distinguishes search algorithms from one anothe

Search strategies
A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
• Completeness – does it always find a solution if one exists?
• Time complexity – number of nodes generated/expanded
• Space complexity – maximum number of nodes in memory
• Optimality – does it always find a least-cost solution?

Time and space complexity are measured in terms of:
• b – maximum branching factor of the search tree
• d – depth of the least-cost solution
• m – maximum depth of the state space (may be ∞)

Uninformed Graph Search
Characteristics of Uninformed Graph Search/Traversal:
• There is no additional information about states/vertices beyond what is provided in the

problem definition.
• All that the search does is generate successors/neighbors and distinguish a goal state from

a non-goal state.

The systematic search “lays out” all paths from the
initial vertex, it traverses the search tree of the graph.

Uninformed Graph Search
F: search data structure (fringe)
Parent array: stores “edge come from” to record visited states

F.insert(v)
Parent[v] ← true
While not F.isEmpty() do
u← F.extract()
if isGoal(u) then
return true

for each v in outEdges(u) do
if no parent[v] then

F.insert(v)
Parent[v] ← u

Uninformed Graph Search

• Breadth-first search (BFS)

• Depth-first search (DFS)

• Depth-limited search (DLS)

• Iterative Deepening Search (IDS)

Breadth-first Search (BFS)

Breadth-first Search (BFS)
Strategy: Expand shallowest unexpanded node
Implementation:
Fringe = first-in first-out (FIFO), i.e., unvisited successors go at end (F is a queue)

Breadth-first Search (BFS)
Strategy: Expand shallowest unexpanded node
Implementation:
Fringe = first-in first-out (FIFO), i.e., unvisited successors go at end (F is a queue)

Breadth-first Search (BFS)
Strategy: Expand shallowest unexpanded node
Implementation:
Fringe = first-in first-out (FIFO), i.e., unvisited successors go at end (F is a queue)

Breadth-first Search (BFS)
Strategy: Expand shallowest unexpanded node
Implementation:
Fringe = first-in first-out (FIFO), i.e., unvisited successors go at end (F is a queue)

Breadth-first Search (BFS)
Strategy: Expand shallowest unexpanded node
Implementation: Fringe = first-in first-out (FIFO) (F is a queue)

F.insert(v)
Parent[v] ← true
While not F.isEmpty() do
u← F.extract()
if isGoal(u) then
return true

for each v in outEdges(u) do
if no parent[v] then

F.insert(v)
Parent[v] ← u

Running time?

Properties of Breadth-first Search (BFS)
Complete? Yes (if b is finite)

Time? 1 + b + b2 + b3 + … + bd + b(bd-1) = O(bd+1), ie, exp. In b

Space? O(bd+1) (keeps every node in memory)

Optimal? Yes, (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100 MB/sec, so, 24 hrs = 8.6 TB).

Basic Behavior:

• Expands all nodes at depth d before those at depth d+1.

• The sequence is root, then children, then grandchildren in the search tree.

Properties of Breadth-first Search (BFS)
Problems:

• If the path cost is a non-decreasing function of the depth of the goal node, BFS is optimal
(uniform cost search a generalization).

• A graph with no weights can be considered to have edges of weight 1, in this case, BFS is
optimal.

• BFS will find the shallowest goal after expanding all shallower nodes (if branching factor
is finite). Hence, BFS is complete.

• BFS is not very popular because time and space complexity are exponential (with respect
to d).

• Memory requirements of BFS are a bigger problem.

