
Artificial Intelligence

CS 444 – Spring 2019
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Time and Uncertainty

Time and Uncertainty
The world changes; we need to track and predict it

Examples: Diabetes management , vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g. BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g. MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem.
Notation: Xa:b = Xa, XA+1, … , Xb-1, Xb

Markov processes (Markov chains)
Construct a Bayes net from these variables: parents?
Markov assumption: Xt depends on bounded subset of X0:t -1

First-order Markov process: P(Xt | X0:t-1) = P(Xt | Xt-1)
Second-order Markov process: P(Xt | X0:t-1) = P(Xt | Xt-1, Xt-2)

X t-2 X t-1 X t X t+1 X t+1

X t-2 X t-1 X t X t+1 X t+1

First-order

Second-order

Sensor Markov assumption: P(Et | X0:t, E0:t-1) = P(Et | Xt)

Stationary process: transition model P(Xt | Xt-1) and sensor model P(Et | Xt)
fixed for all t.

Example

First-order Markov assumption not exactly true in
the real world.
Possible fixes:
• Increase order of Markov process
• Augment state, e.g., Add temp, pressure, etc.
Example: robot motion:

Augment position and velocity with Battery

Transition Probabilities
T(i,j) = P(Xk+1 =j | Zk = i)
(i,j ∈ m). Called the transition or
stochastic matrix

Emission probabilities
(called the sensor model in the
textbook)

Inference tasks
Filtering: P(Xt | e1:t)

Belief state – input to the decision process of a rational agent

Prediction: P(Xt+k | e1:t) for k > 0
Evaluation of possible action sequences; like filtering without the evidence

Smoothing: P(Xk | e1:t) for 0 ≤ k < t
Better estimate of past states, essential for learning

Most likely explanation: ARGMAX x1:t P(x1:t | e1:t)
Speech recognition, decoding with a noisy channel

Filtering
Goal: compute the belief state – the posterior distribution over the most recent
state – given all the evidence seen to date.
Aim: devise a recursive state estimate algorithm:

P(Xt+1 | e1:t+1) = f(et+1, P(Xt | e1:t))
P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t, et+1) divide evidence variables

= 𝛼P(et+1 | Xt+1, e1:t) P(Xt+1 | e1:t) using Bayes' rule
= 𝛼P(et+1 | Xt+1) P(Xt+1 | e1:t) Markov assumption

i.e., prediction + estimation. Prediction by summing out and conditioning on Xt:
P(Xt+1 | e1:t+1) = 𝛼P(et+1 | Xt+1) ∑$% 𝑃 𝑋()* 𝑥(, 𝑒*:()𝑃(𝑥(, 𝑒*:()
= 𝛼P(et+1|Xt+1) ∑$% 𝑃 𝑋()* 𝑥()𝑃(𝑥(, 𝑒*:()

f1:t+1 = Forward(f1:t, et+1) where f1:t = P(Xt | e1:t)
Time and space constant (independent of t) !!!

Filtering Example
Day 0: All we have are the beliefs
(priors)
Day 1: Umbrella appears.
P(R1) = ∑12 𝑃 𝑅* 𝑟5)𝑃(𝑟6)
= ⟨0.7,0.3⟩ x 0.5 + ⟨0.3, 0.7⟩ x 0.5 = ⟨0.5, 0.5⟩

Rt-1 P(Rt)

t 0.7

f 0.3

Rt P(Ut)

t 0.9

f 0.2

Update based on evidence (Umbrella)
P(R1 | u1) = 𝛼P(u1,R1)𝑃 𝑅* = 𝛼⟨0.9,0.2⟩ x ⟨0.5, 0.5⟩ = 𝛼⟨.45, 0.1⟩ ≈ ⟨0.818, 0.182⟩

Day 2: Umbrella appears.
P(R2| u1) = ∑1: 𝑃 𝑅; 𝑟*)𝑃 𝑟* 𝑢*)
= ⟨0.7,0.3⟩ x 0.818 + ⟨0.3, 0.7⟩ x 0.182 ≈ ⟨0.627, 0.373⟩
Update: P(R2 | u1, u2) = 𝛼P(u2 | R2)P(R2 | u1) = 𝛼⟨0.9, 0.2⟩⟨0.627, 0.373⟩
= 𝛼⟨0.565, -.0075⟩ ≈ ⟨0.883, 0.117⟩

Smoothing

Divide evidence e1:t into e1:k, ek+1:t

Backward message computed by a backwards recursion:
P(e1+1:t | Xk) = ∑$=>: 𝑃 𝑒?)*:(𝑋?, 𝑋?)*) 𝑃 𝑥?)* 𝑋?)
= ∑$=>: 𝑃 𝑒?)*:(𝑥?)*) 𝑃 𝑥?)* 𝑋?)
= ∑$=>: 𝑃 𝑒?)*:(𝑥?)*) 𝑃 𝑥?);:(𝑋?)*) 𝑃 𝑥?)* 𝑋?)

P(Xk | e1:t) = P(Xk| e1:k, ek+1:t)
=𝛼P(Xk | e1:k)P(ek+1:t | Xk, e1:k)
=𝛼P(Xk | e1:k) P(ek+1:t | Xk)
=𝛼P(Xk | e1:k) P(ek+1:t | Xk)
= 𝛼f1:kbk+1:t

Smoothing Example

Forward-backward algorithm
Time linear in t (polytree inference) space is O(t|f|)

P(R1 | u1, u2) = 𝛼𝑃 𝑅* 𝑢*)𝑃 𝑢; 𝑅*)
P(u2 | R1) = ∑1@ 𝑃 𝑢; 𝑟;) 𝑃 𝑟; 𝑅*)
= (0.9 x 1 x ⟨0.7, 0.3⟩) + (0.2 x 1 x ⟨0.3, 0.7⟩ = ⟨0.69, 0.41)
P(R1 | u1, u2) = 𝛼⟨0.818,0.182⟩ x ⟨0.69, 0.41⟩ ≈ ⟨0.883, 0.117⟩

Most likely explanation
Most likely sequence ≠ sequence of most likely states!!!
Most likely path to each xt+1 = most likely path to some xt plus one more step

max
$:…$%

𝑃(𝑥*, … , 𝑥(, 𝑋()* 𝑒*:()*
= 𝑃 𝑒()* 𝑋()*)maxF%

𝑃 𝑋()* 𝑥(max
$:… $%G:

𝑃 𝑥*, … , 𝑥(H*, 𝑥(𝑒*:())

= 𝑃 𝑒()* 𝑋()*) max
F%

𝑃 𝑋()* 𝑥(max
$:… $%G:

𝑃 𝑥*, … , 𝑥(H*, 𝑥(𝑒*:()

Identical to filtering, except f1:t replaced by
𝑚*:(= max

$:…$%G:
𝑃 𝑥*, … , 𝑥(H*, 𝑋(𝑒*:()

i.e., m1:t(i) gives the probability of the most likely path to
state i. Update has sum replaced by max, giving the
Viterbi algorithm.

𝑚*:()* = P 𝑒()* 𝑋()*) max$%
𝑃 𝑋()*|𝑥(𝑚*:(

Hidden Markov Model
Xt is a single, discrete variable (usually Et is too). Domain
of Xt is {1, …., S}

Transition matrix Tij = P(Xt = j | Xt-1 = i), e.g. 0.7 0.3
0.3 0.7

Sensor matrix Ot for each time step, diagonal elements
P(et | Xt = i)

e.g. With U1 = true, O1 = 0.9 0
0 0.2

Forward and backward messages as column vectors
𝑓*:()* = 𝛼𝑂()*𝑇T𝑓*:(
𝑏?)*:(= 𝑇𝑂?)*𝑏?);:(

Forward-backward algorithm needs time O(S2t) and space O(St)

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

𝑓V:(W* = 𝛼𝑂()*𝑇(𝑓*:(
𝑂()*H* 𝑓*:()* = 𝛼𝑇(𝑓*:(

𝛼X 𝑇T H*𝑂()*H* 𝑓*:()* = 𝑓*:(

Algorithm: forward pass computes ft, backward pass foes fi, bi

Updating Gaussian distributions
Prediction step: if P(Xt | e1:t) is Gaussian, then prediction

𝑃 𝑋()* 𝑒*:() = Y
F%
𝑃 𝑋()*| 𝑥(𝑃 𝑥(| 𝑒*:(𝑑𝑥(

is Gaussian. If P(Xt+1 | e1:t) is Gaussian, then the update distribution
𝑃 𝑋()*| 𝑒*:()* = 𝛼𝑃 𝑒()*| 𝑋()* 𝑃 𝑋()*| 𝑒*:(

is also Gaussian.

Hence, P(Xt| e1:t) is multivariate Gaussian N(𝜇t, 𝛴t) for all t
General (nonlinear, non-Gaussian) process: description of posterior
grows unbounded as t →∞

Kalman Filters
Modelling systems described by a set of continuous variables, e.g.,
tracking a bird flying – Xy = X, Y, Z, X, Y, Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions
Prediction step: if P(Xt | e1:t) is Gaussian, then prediction

𝑃 𝑋()* 𝑒*:() = Y
F%
𝑃 𝑋()*| 𝑥(𝑃 𝑥(| 𝑒*:(𝑑𝑥(

is Gaussian. If P(Xt+1 | e1:t) is Gaussian, then the update distribution
𝑃 𝑋()*| 𝑒*:()* = 𝛼𝑃 𝑒()*| 𝑋()* 𝑃 𝑋()*| 𝑒*:(

is also Gaussian.

Hence, P(Xt| e1:t) is multivariate Gaussian N(𝜇t, 𝛴t) for all t
General (nonlinear, non-Gaussian) process: description of posterior
grows unbounded as t →∞

Simple 1-D example
Gaussian random walk on X-axis, s.d., 𝜎x, sensor s.d. 𝜎x

𝜇()* =
𝜎(; + 𝜎$; 𝑧()* + 𝜎`;𝜇(

𝜎(; + 𝜎$; + 𝜎`;
𝜎()*; =

𝜎(; + 𝜎$; 𝜎`;

𝜎(; + 𝜎$; + 𝜎`;

General Kalmann Update
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑜𝑑𝑒𝑙𝑠:

𝑃 𝑥()*| 𝑥(= 𝑁 𝐹𝑥(, Σ$ 𝑥()*
𝑃 𝑧(| 𝑥(= 𝑁(𝐻𝑥(, Σ`) 𝑧(

𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛; 𝛴𝑥the transitiobn noise covariance
H is the matrix for the sensors, 𝛴𝑥 the sensor noise covariance

𝐹𝑖𝑙𝑡𝑒𝑟 computes the following update:

2-D tracking example: filtering

2-D tracking example: smoothing

Where is breaks
𝐶𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

Main	idea:
Extended	Kalman	Filter	models	transition	as	locally	linear	around	xt =	ut.
Fails	if	systems	is	locally	unsmooth

Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net

Dynamic BN vs. Hidden Markov Models

Every HMM is a single variable DBN; every
discrete DBN is an HMM

Sparse dependencies ⟹ exponentially fewer parameters
e.g. 20 state variables, three parents each
DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 ≈ 1012

Dynamic BN verus Kalman Filter
Every Kalman filter model is a DBM, but few DBM are KFs; real world requires non-Gaussian
posteriors. E.g., where are bin Laden and my keys? What's the battery charge?

Viterbi Example

