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Time and Uncertainty

The world changes; we need to track and predict it
Examples: Diabetes management, vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢

e.g. BloodSugar,, StomachContents,, etc.
E, = set of observable evidence variables at time ¢

e.g. MeasuredBloodSugar,, PulseRate,, FoodEaten,
This assumes discrete time; step size depends on problem.
Notation: X_., = X_, Xa,1, .-, Xp1, Xy
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X, depends on bounded subset of X;.; 4
First-order Markov process: P(X; | Xg...1) = P(X; | Xi.1)
Second-order Markov process: P(X; | Xq..1) = P(X; | Xiq Xi5)

First-order

Second-order

Sensor Markov assumption: P(E; | Xg.., Eg..1)

I
=
rm
—t
P

Stationary process: transition model P(X; | X, ;) and sensor model P(E, | X)
fixed for all t.
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Example
R; 1| P(R;)

t
Transition Probabilities / i
Rain; _,

Ty = PXwr =i | Z=1)
(i,j € m). Called the transition or P(U,)
stochastic matrix ]'; 09

Umbrell@ @brel@ \ Umbrell@

First-order Markov assumption not exactly true in
the real world.

Possible fixes: Emission probabilities
* Increase order of Markov process (called the sensor model in the
textbook)

* Augment state, e.g., Add temp, pressure, etc.

Example: robot motion:
Augment position and velocity with Battery
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Inference tasks

Filtering: P(X; | e1.)
Belief state — input to the decision process of a rational agent

Prediction: P(X., | e14) fork>0
Evaluation of possible action sequences; like filtering without the evidence

Smoothing: P(X, | e;4) forO<k<t
Better estimate of past states, essential for learning

Most likely explanation: ARGMAX Xq.; P(X1+ | €14)
Speech recognition, decoding with a noisy channel
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Filtering
Goal: compute the belief state — the posterior distribution over the most recent

state — given all the evidence seen to date.

Aim: devise a recursive state estimate algorithm:
P(Xir1 | €1.441) = (€1, P(X; | €124))

P(Xir1 | €1:441) = P(Xes1 | €10 €141) divide evidence variables
= aP(epq | Xi1s €1:) P(Xeq | €124) using Bayes' rule
= aP(eqq | Xiv1) P(Xisq | €1.4) Markov assumption

l.e., prediction + estimation. Prediction by summing out and conditioning on X;:
P(Xt+1 | e1:t+1) = aP(et+1 | Xt+1) thP(Xt+1|xt' el:t)P(xti el:t)

= aP(eq | Xeq) th P(Xey1|xe)P (X, €1:6)
fl:t+1 = Forward(flzt; et+1) Where fl:t = P(Xt | e1:t)
Time and space constant (independent of t) !!!
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. . 0.500 0.627

F”terlng Examp\e 0.500 0.373
Day O: All we have are the beliefs True 0500 0_2!18 0_383
(priors) False  0.500 0.182 0.117

Day 1: Umbrella appears. % @ @
P(Ry) = X, P(Ry |75) P (70)

=(0.7,0.3) x 0.5 +(0.3,0.7) x 0.5 =(0.5, 0.5)

Update based on evidence (Umbrella) @ @
P(R; | uy) = aP(u,Ry)P(Ry) = @(0.9,0.2) x (0.5, 0.5) = a(.45, 0.1) = (0.818, 0.182)

Day 2: Umbrella appears.

=(0.7,0.3) x 0.818 + (0.3, 0.7) x 0.182 = (0.627, 0.373) —T — az

Update: P(R, | uy, u,) = aP(u, | R,)P(R, | u;) = a(0.9, 0.2)(0.627, 0.373)
= 2(0.565, -.0075) = (0.883, 0.117)
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Smoothing Dt e
(ED <

P(Xi | e1:) = P(Xc| €1 €xi1t)
Divide evidence e,..into e, €., =aP(X | e )P(eiat | Xio €14

= aP(X | e14) Plea | Xy)

= aP(X | e14) Plea | Xy)

= afl:kbk+1:t

Backward message computed by a backwards recursion:
Plerras | Xi) = Xx PCerar:e| X Xiew1) P(Xpeq1|Xk)
= Zxkﬂ P(ers1:¢ [%rr1) P(Xpey11Xp)
= Yxrrs PChatit 1Xk41) POckaz:e| Xier1) P (g1 Xi)
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Smoothing Example

0.500 0.373
True  0.500 5!18 o.!ss f .
False 0.500 0.182 0.117 orwar

O.!SS 0.2!83

0.117 0.117 smoothed

0.690 1.000 b ackward

0.410 1.000

Time linear in t (polytree inference) space is O(t|f]) @ @

P(R; | uy, uy) = aP(Rq|uq)P(uz|Ry)
P(u, | Ry) = 2, P(uzlry) P(r;]R;)

- (0.9x1x(0.7,0.3)) + (0.2 x 1 x (0.3, 0.7) = (0.69, 0.41)
PR, | us, u,) = a(0.818,0.182) x (0.69, 0.41) = (0.883, 0.117)
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Most likely explanation

Most likely sequence # sequence of most likely states!!!

Most likely path to each x,,; = most likely path to some x, plus one more step

max P(xq, ..., X¢, Xe41| €1:641)

X1.---X¢t

= P(es+11Xt+1) H}(aX(P(XtH |x¢) N mgicx P(xq, .o, Xe—1, X¢l€1:t) )
t t—1

= P(es+11Xt+1) (n}(aX(P(Xt+1 |x¢) . max P(xq, .., X¢—1, xtlel:t))
t Xt—1

Identical to filtering, except f,., replaced by
My = max P(xq, .., xXe—1, X¢leqt)
X1 Xt—1

i.e., m,.(i) gives the probability of the most likely path to
state i. Update has sum replaced by max, giving the
Viterbi algorithm.

My.¢+1 = P(€rs1 | Xt41) max(P(X¢iq|xe)my.e)

Xt
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Hidden Markov Model

X, is a single, discrete variable (usually E, is too). Domain
of X,is {1, ...., S}

0.7 0.3)

Transition matrix T;; = P(X, =] | X, =), e.g. (0.3 0.7

Sensor matrix O, for each time step, diagonal elements
P(e, | X, =1i)

e.g. With U; =true, O, = (0'9 0 )

0 0.2

Forward and backward messages as column vectors

fie41 = a0t+1TTf1:t

brs1:t = TOky1brs:t
Forward-backward algorithm needs time O(S%t) and space O(St)
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

fit=1 = “0t+1th1:t
Ot_+11f1:t+1 = athl:t
a' (T Y0 free1 = fre

Algorithm: forward pass computes f,, backward pass foes f, b,

@ JAMES MADISON
UNIVERSITY.



Updating Gaussian distributions

Prediction step: if P(X; | e,.) is Gaussian, then prediction

P(X¢i1lerr) = j P(Xts1] xe)P(x¢| €1.¢)dxy
Xt

is Gaussian. If P(Xt+1 | el:t) is Gaussian, then the update distribution
P(Xt41l €1:641) = aP(eryq| Xe41)P(Xiqq] €1:1)

is also Gaussian.

Hence, P(X,| e,.) is multivariate Gaussian N(u,, 2,) for all t

General (nonlinear, non-Gaussian) process: description of posterior
grows unbounded as t oo
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Kalman Filters

Modelling systems described by a set of continuous variables, e.g.,
tracking a bird flying—Xy=X,Y,Z, X, Y, Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets

®

Gaussian prior, linear Gaussian transition model and sensor model

@ JAMES MADISON
UNIVERSITY.



Updating Gaussian distributions

Prediction step: if P(X; | e,.) is Gaussian, then prediction

P(X¢i1lerr) = j P(Xts1] xe)P(x¢| €1.¢)dxy
Xt

is Gaussian. If P(Xt+1 | el:t) is Gaussian, then the update distribution
P(Xt41l €1:641) = aP(eryq| Xe41)P(Xiqq] €1:1)

is also Gaussian.

Hence, P(X,| e,.) is multivariate Gaussian N(u,, 2,) for all t

General (nonlinear, non-Gaussian) process: description of posterior
grows unbounded as t oo

@ JAMES MADISON
UNIVERSITY.



Simple 1-D example

Gaussian random walk on X-axis, s.d., g,, sensor s.d. o,

(0f +0%)Ze1 + O 2 (of +05) o7
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General Kalmann Update

Transition and sensor models:

P(xeqq1]| xe) = N(Fxg, Zy) (X 41)
P(z¢| x¢) = N(Hx, £,)(2¢)

F is the matrix for the transition; Xxthe transitiobn noise covariance

H is the matrix for the sensors, 2x the sensor noise covariance

Filter computes the following update:
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2-D tracking example: filtering

2D filtering

12
—8—  true
* observed
1L —x-- filtered

10
» 9 -
8 -
7 -

6 |

8 10 12 14 16 18 20 22 24



2-D tracking example: smoothing

2D smoothing
12
—8—  true
* observed
i - smoothed
*
4 lx).
_*_ T
g_
8
R
7
6 | | | |
8 10 12 14 16 18 20 22 24
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Where is breaks

Cannot be applied if the transition model is nonlinear

Main idea:
Extended Kalman Filter models transition as locally linear around xt = ut.

Fails if systems is locally unsmooth
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Dynamic Bayesian networks

X;, E; contain arbitrarily many variables in a replicated Bayes net

Ry | P(Ry)

P(Ry)

P(Uy)

0.9
0.2

Umbrella
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Dynamic BN vs. Hidden Markov Models

Every HMM is a single variable DBN; every
discrete DBN is an HMM

& TSGR
© KR
ol N7

Sparse dependencies = exponentially fewer parameters

99

e.g. 20 state variables, three parents each
DBN has 20 x 23 = 160 parameters, HMM has 229 x 220 = 10%?
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Dynamic BN verus Kalman Filter

Every Kalman filter model is a DBM, but few DBM are KFs; real world requires non-Gaussian
posteriors. E.g., where are bin Laden and my keys? What's the battery charge?

| | | |
BMBroken, y=( BMBroken 5 E(Batteryl...5555005555...)
5 kR R ey A
e
S
4r E(Batteryl...5555000000..
L
5
_ 2r i
82
P(BMBrokenI 5000000..{)
1 gege-g-g-g-g8- EI ----- o R
0 m—-»m-m-%»-&--w-m»--»%»-@---&""E KK K- eue K- K- KKK
P(BMBrokenI 5555005555..)
-1 1 1 1 1
15 20 25 30
Time step
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Viterbi Example

Rain | Rain ) Rain 3 Rain 4 Rain 5
state ' | | |
space
paths

- false Jalse Jalse Jalse | Jalse
umbrella Jalse
most < 8182 S155 0361 | 0334 v 0210
likely A
paths 1818 0491 1237 0173 0024

m,. m,., m;; m,.4 m,.s
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