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Uncertainty
Let action At = leave for airport t minutes before your flight. What At will get me there on time?

Problems:

Hence a purely logic approach either:

1) Risks falsehood: “A25 will get me there on time” or

2) Leads to conclusions that are too weak for decision making

“A25 wll get me there on time if there’s no accident on the bridge and it doesn’t rai and 

my tires remain intact, etc).

(A1440 might reasonable be said to get me there on time, but I’d have to stay overnight 

at the airport …).

1) Partial observability (road state, other drivers’ plans, etc.).

2) Noisy sensors (WTOP traffic reports)

3) Uncertainty in action outcomes (flat tire, etc.)

4) Immense complexity of modelling and predicting traffic



Methods for Handling Uncertainty
Default or nonmonotonic logic:

Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable?  How to handle contradiction?

Rules with fudge factors: 

Issues: Problems with combinations, e.g., Sprinkler causes Rain?
Probability
Given the available evidence, A25 will get me there on time with probability 0.04.
Mahaviracara (9th C.), Cardamo (1565) theory of gambling

!"# ↦%.' !(!)*+,*(-./)01
Sprinkler ↦%.22 31(4*566
Sprinkler ↦%.7 Rain

(Fuzzy logic handles degrees of truth NOT uncertainty, e.g
WetGrass is true to degree 0.2) 



Probability
Probabilistic assertions summarize efforts of:

Laziness: failure to enumerate exceptions, qualifications, etc.
Ignorance: lack of relevant facts, initial conditions, etc.

These are not claims of a “probabilistic tendency” in the current situation (but might be 
learned from past experience of similar situations)

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge.
e.g.  P(A25 | no reported accidents) = 0.06

Probabilities of propositions change with new evidence:
e.g. P(A25 | no report accidents, 5 a.m.) = 0.15
Analogous to logical entailment status (KB ⊨ ", not truth).



Making Decisions under Uncertainty
Suppose I believe the following:

P(A25 gets me there on time | …) = 0.04

P(A90 get me there on time | ...) = 0.70

P(A120 get me there on time | …) = 0.95

P(A1440 gets me there on time | …) = 0.9999

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Which action to choose?

Depends on my preferences for missing flight vs airport cuisine, etc.



Probability Basics
Begin with a set Ω – the sample space.   E.g. 6 possible rolls of a die. 

ω ∈ Ω is a sample point/possible world/atomic event.  A probability space or probability 
model is a sample space with an assignment P(ω) for every ω ∈ Ω s.t.
0 ≤ P(ω) ≤ 1 "

#
$ % = 1

e.g., P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6. 
An event A is any subset of Ω
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e.g.   P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2



Random Variables
A random variable is a function from sample points to some range, e.g. the reals or Booleans
e.g. Odd(1) = true

P induces a probability distribution for any r.v. X:

e.g. P(Odd = true) = P(1) + P(3) + P(5) = 1/6  + 1/6 + 1/6 = 1/2 
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Propositions
Think of a proposition as the event (set of sample points), where the proposition is true

Given Boolean random variables A and B:
event a = set of sample points where A(ω) = true
event ¬a = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the value of a set of random 
variables, i.e., the sample space is the Cartesian product of the ranges of the variables
With Boolean variables, sample point = propositional logic model
e.g., A = true, B = false, or a ∧ ¬ b

Propositional = disjunction of atomic events in which it is true
e..g (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b) 
⟹ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b) 



Why Use Probability?
The definitions imply that certain logically related events must have related probabilities
E.g., P(a ∨ b) = P(a) + P(b) – P(a ∧ b)

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can 
be forced to bet so as to lose money regardless of outcome.



Syntax for Propositions
Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite).
e.g. Weather is one of <sunny, rain, cloudy, snow>
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6, also allowed, Temp < 22.0

Arbitrary Boolean combinations of basic propositions



Prior Probability
Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72

Correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments.

P(Weather, Cavity) = a 4 x 2 matrix of values:

P(Weather) = < 0.72, 0.1, 0.08, 0.1 > (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of 
every atomic event on those r.v.s (i.e., every sample point)

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint 
distribution because every event is a sum of sample points



Probability for Continuous Variables
Express distribution as a parameterized function of value:

P(X = x) = U[18,26](x) = uniform density between 18 and 26

Here P is a density; integrates to 1.  P(X = 20.5) = 0.125 really means

lim$%→'( 20.5 ≤ . ≤ 20.5 + 01 01 = 0.125



Gaussian Density
Express distribution as a parameterized function of value:

! " = 1
2&' (

)(+ ) ,). / 01.
What does P(x) represent?



Conditional Probability
Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8    i.e., given that toothache is all I know

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity | toothache, 49ersWin) = P(cavity | toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial 

P(Cavity | Toothache) = 2-element vector of 2-element vectors.

If we know more, e.g., cavity is also given, then we have

NOT “if toothache then 80% chance of cavity”.  Notation for conditional distributions:

P(cavity | toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but is not always 
useful



Conditional Probability
Definition of conditional probability:

Product rule gives an alternative formulation:

A general version holds for whole distributions, e.g.
P(Weather, Cavity) = P(Weather | Cavity)P(Cavity). View as a 4 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, …, Xn) = P(X1, …, Xn-1) P(Xn | X1, … Xn-1)
= P(X1, …., Xn-2)P(Xn -1| X1, ….. Xn-2) P(Xn, X1, …., Xn-1)
=∏"#$

% & '" '$ , … , '"*$ )
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Inference by Enumeration

Start with the joint distribution:
toothache ¬ toothache

catch ¬catch Catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

For any proposition !, sum the atomic events where it is true "(!) = ∑%:'⊨)"(*)
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

P(cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

P(¬cavity | toothache) = 
"(¬cavity ∧ toothache)

"(8998ℎ;<ℎ=)
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064 = 0.4



Normalization
toothache ¬ toothache

catch ¬catch Catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

Denominator can be viewed as a normalization constant !
P(Cavity | toothache) = !P(Cavity, toothache)

= ![P(Cavity, toothache, catch) + P(Cavity, toothache, ¬catch)]
= ![<0.108, 0.016> + <0.012, 0.064>]

= ![<0.12, 0.08>  =  <0.6, 0.4>]
General idea: compute distribution on 
query variable by fixing evidence 
variables and summing over hidden 
variables.



Inference by Enumeration

Then the required summation of joint entries is done by summing out the hidden variables

Let the hidden variables be H = X – Y – E 

The terms in the summation are joint entries because Y, E, and H together exhaust the 
set of random variables.

Some problems:
1. Worst-case time complexity O(dn) where d is the largest arity
2. Space complexity O(dn) to store the joint distribution
3. How to find the numbers for O(dn) entries?

Let X be all the variables.  Typically, we want the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E.

P(Y | E = e) = !P Y, E = e = !∑) *(,, - = ., / = ℎ)



Independence
A and B are independent iff P(A|B) = P(A) or P(B | A) = P(B) 

P(Toothache, Catch, Cavity, Weather) = P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n
Absolute independence is powerful, but very rare

Denistry is a large field with hundreds of variables, none of which are independent.  
What to do?



Conditional Independence
P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries

Catch is conditionally independent of Toothache given Cavity.

P(Catch| Toothache, Cavity) = P(Catch | Cavity)

Thus, these are equivalent statements:

P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I 
have a toothache: thus.  (1) P(catch | toothache, cavity) = P(catch | cavity)
The same independence holds if I don’t have a cavity: 

(2) P(catch | toothache, ¬cavity) = P(catch | ¬cavity)



Conditional Independence
Write out full joint distribution using the chain rule:

i.e. 2 + 2 + 1 = 5 independent numbers.  Big deal?
P(Catch| Toothache, Cavity) = P(Catch | Cavity)

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about 
uncertain environments.

P(Toothache, Catch, Cavity) 
= P(Toothache | Catch, Cavity) P(Catch, Cavity)
= P(Toothache | Catch, Cavity)P (Catch | Cavity) P(Cavity)
= P(Toothache| Cavity) P(Catch | Cavity)P(Cavity)



Bayes’ Rule
Product rule P(a ∧ b) = P(a | b)P(b) = P(b | a)P(a)

⟹ Bayes’ rule Why is this useful?# $ %) = # % $) #($)
#(%)

# )$*+, -..,/0) = # -..,/0 )$*+,) #()$*+,)
#(-..,/0)

Diagnostic 
Direction

Causal Direction
(usually easier to calculate)

Consider which is easier: P(Stiff Neck | Meningitis) or P(Meningitis | Stiff Neck)



Bayes’ Rule

! "#$%$&%'%( )'%**+#,-) = ! )'%**+#,- "#$%$&%'%() !("#$%$&%'%()
!()'%**+#,-)

If an outbreak occurs, we can update this equation rather easily.

! "#$%$&%'%( )'%**+#,-) = 0.80 4 0.0001
0.1 = 0.0008

P(s | m) = 0.8
P(m) = 0.0001
P(s) = 0.1



Bayes’ Rule and Naïve Bayes

! "#$%&' &((&ℎ#*ℎ+ ∧ *#&*ℎ) = /!(&((&ℎ#*ℎ+ ∧ *#&*ℎ "#$%&' !("#$%&')

This is an example of a naïve Bayes model.

= /! &((&ℎ#*ℎ+ "#&*ℎ ! *#&*ℎ "#$%&')!("#$%&')


