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Bayesian Networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distribution

Syntax:
• A set of nodes, one per variable
• A directed, acyclic graph (link is approximately "directly influences")
• a conditional distribution for each node given its parents P(Xi | Parents(Xi)). 

In the simplest case, conditional distribution represented as a conditional probability 
table (CPT) giving the distribution over Xi for each combination of parents values.



Example of a Bayesian Networks
Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity.



Example of a Bayesian Networks
I'm at work, neighbor John calls to say my alarm is ringing, but my neighbor Mary doesn't 
call.  Sometimes it's set off by monitor earthquakes.  Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
• A burglar can set off the alarm
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to Call.  



Example of a Bayesian Networks



Compactness
A CPT for Boolean Xi with k Boolean parents.  

Has:
2k rows for the combinations of parent values
Each row requires on number p for Xi = true
(the number for Xi = false is simply 1 – p)

If each variable has no more than k parents, the complete network requires O(n · 2k) numbers

i.e. grows linearly with n, vs O(2n) for the full joint distribution.

For the burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 – 1 = 31).  



Global Semantics
Global semantics defines the full joint 
distribution as the product of the local 
conditional distributions.
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e.g. P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a )P(M | a) P (a | ¬b, ¬e)P(¬b) P(¬e)

= 0.9 x 0.7 x 0.001 x 0.999 x .998
≈ 0.00063



Local Semantics
Local semantics: each node is conditionally 
independent of its nondescenants given its 
parents

Theorem: Local semantics ⇔ global semantics 



Markov Blanket
Each node is conditionally independent of all others given its Markov blanket: parents + 
children + children's parents



Constructing a Bayesian Network
Need a method such that a series of locally testable assertions of conditional 
independence guarantees the required global semantics

1. Choose an ordering of variables: X1, … , Xn

2. For I = 1 to n
• Add Xi to the network
• Select parents from X1, … , Xi-1 such that P(Xi | Parents(Xi)) = P(Xi | X1, …, Xi-1)

This choice of parents guarantees the global semantics



Example
Suppose we choose the ordering M, J, A B, E

P(J | M) = P(J). No.    
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Example
Suppose we choose the ordering M, J, A B, E
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Example
Deciding conditional independence is hard in 
noncausal directions (causal models and 
conditional independence seem hardwired for 
humans!).
Assessing conditional probabilities is hard in 
noncausal directions, resulting in the network 
being less compact: 1 + 2 + 4 + 2 + 4 = 13 
numbers needed



Example: Car Diagnosis
Initial evidence: car won't start
Testable variables (Green), "Broken, so fix it" variables are orange
Hidden variables (gray) ensure sparse structure, reduce parameters



Example: Car Insurance



Compact Conditional Distributions
CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child



Some Exercises
We have a bag of 3 biased coins: a, b, c with probabilities of coming up 
heads of 20%, 60%, and 80% respectively.  One coin is drawn radmonly from 
the bag (with equal likelihood od drawing each of the 3 coins), and then the 
coin is flipped 3 times to generate the outcomes X1, X2, and X3.

1. Draw the Bayesian network corresponding to this setup and define the 
necessary CPTs.

2. Calculate which coin was most likely to have been drawn from the bag if 
the observed flips come out heads twice and tails once.



Some Exercises
Consider this Bayesian 
network. 
1. If no evidence is observed, 

are Burglary and 
Earthquake independent?  
Explain why/why not.

2. If we observe Alarm = 
true, are Burglary and 
Earthquake independent? 
Justify your answer by 
calculating whether the 
probabilities involved 
satisfy the definition of 
conditional independence.


