Artificial Intelligence

Probabilistic Reasoning

CS 444 – Spring 2019 Dr. Kevin Molloy Department of Computer Science James Madison University

Wumpus World

Knowledge:

- A pit causes a breeze in all adjacent squares
- Each square other than [1, 1] contains a pit with probability 0.2

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
OK	OK		

P_{ii} = true iff [i, j] contains a pit

B_{ii} true iff [i, j] is breezy

UNIVERSITY

Include only $B_{1,1}$, $B_{1,2}$, $B_{2,1}$ in the probability model

Specifying the Probability Model

The full joint distribution is P(P_{1,1}, ..., P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})

Apply product rule: P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4}) P(P_{1,1}, ..., P_{4,4})

(Do this to get P(Effect | Cause).

First term: 1 if pits are adjacent to breezes, 0 otherwise.

Second term: pits are placed randomly, probability 0.2 per square:

 $P_{1,1}, ..., P_{4,4} = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n} for n pits$

Observations and Query

We know the following facts:

 $b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$ known = $\neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is P(P_{1,3} | known, b)

Define Unknown = Pij s other than P1,3 and Known For inference by enumeration, we have: $P(P_{1,3} \mid known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)$

Yikes !!! This grows exponentially with the number of squares.

Employing Conditional Independence

Basic insight: observations are conditionally independent of other hidden squares given neighboring hidden squares.

Define Unknown = Fringe U Other P(b | $P_{1,3}$, Known, Unknown) = P(b | $P_{1,3}$, Known, Fringe)

Manipulate query into a form where we can use this. = $\alpha P(P_{1,3}) \sum_{fringe} P(b | known, P_{1,3}, fringe) P(fringe)$

