
Artificial Intelligence

CS 444 – Spring 2019
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Logical Agents and 
Propositional Logic



Problem from last time
Take a minute a write down a definition for the following:

• Backtracking search

• Min-conflicts
• Cutset cycle



Outline

• Logic – Models and Entailment

• Knowledge-based Agents

• Propositional (Boolean Logic)

• Wumpus World

• Model checking: Inference by Enumeration



Knowledge Bases

Knowledge base = set of sentences in a formal language
Declarative approach to build an agent (or other system):
• Tell it what it needs to know
• Then it can Ask itself what to do, answers should follow from the KB
Agents can be viewed at the knowledge level.

i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Inference engine

Knowledge base

Domain-independent algorithms

Domain-specific content



A Simple Knowledge-based Agent
function KB-Agent(percept) returns an action

Static: KB, a knowledge base
t, a counter, initially 0, that indicates time

Tell(KB, Make-Percept-Sentence(percept, t))
action ← Ask(KB, Make-Action-Query(t))
Tell(KB, Make-Percept-Sentence(action, t))
t ← t + 1
return action

The agent must be able to:
• Represent states, actions, etc.
• Incorporate new percepts
• Update internal representations of the world
• Deduce hidden properties of the world
• Deduce appropriate actions



Wumpus World – PEAS Description
Performance measure

gold + 1000, death – 1000
-1 per step, -10 for using the arrow

Environment
• Squares adjacent to Wumpus are smelly
• Squares adjacent to pit are breezy
• glitter iff gold is in the same square
• Shooting kills Wumpus if you are facing it
• Shooting uses up the only arrow
• Grabbing picks up gold if in same square
• Releasing drops the gold in same square
• Squeal sound means Wumpus was killed

Actuators
Left turn, right turn, forward, grab, 
release, shoot

Sensors
Breeze, glitter, smell



Wumpus World Characterizations
Observable? Partially observable – only local 

perception

Deterministic? Yes – outcomes exactly specified 

Episodic? No – sequential at the level of 
actions

Yes – Wumpus and pits do not moveStatic ?

Discrete? Yes

Single Agent? Yes (Wumpus is essentially a natural feature)



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Exploring a Wumpus World



Sometimes No Safe Move Exists
Breeze in (1,2) and (2, 1)

⇨no safe actions

Assuming pits uniformly distributed, (2,2) has a pit with 
higher probability. How much?

Smell in (1, 1)
⇨cannot move

Can use strategy of coercion:
shoot straight ahead
Wumpus was there ⇨ dead ⇨ safe
Wumpus wasn’t there ⇨ safe



Logic in General
• Logics are formal languages for representing information such that 

conclusions can be drawn.
• Syntax determines how sentences are expressed in a particular logic/language
• Semantics define the “meaning of sentences”; 
• i.e., define truth of a sentence in a world

• e.g., the language of arithmetic:
• x + 2 ≥ " is a sentence; x2 + y > is not a sentence
• x + 2 ≥ y is true iff the number x + 2 is no less than the number y
• x + 2 ≥ y is true in a world where x= 7, y = 1
• x + 2 ≥ y is false in a world where x= 0, y = 6



Types of Logic
• Logics are characterized by what they commit to as primitives

• Ontological commitment: what exists – facts?  Objects?  Time?  Beliefs?

• Epistemological commitment: what states of knowledge?

Language Ontological 
Commitment

Epistemological
Commitment

Propositional logic Facts true/false/unknown

First-order logic Facts, objects, relations true/false/unknown

Temporal logic Facts, objects, relations, time true/false/unknown

Probability theory Facts Degree of belief

Fuzzy logic Facts + degree of truth Known internal value



Reasoning with Logic

• First order of business: fundamental concepts of logic representation. And 
reasoning

• independent of any logic’s particular form/type 
• Entailment

• Second order of business: Introduction to propositional logic
Wumpus KB via propositional logic

• Third order of business: Drawing conclusions
• Inference and theorem proving



Models

• Can use the term model in place of possible world
• Logicians typically think in terms of models, which are formally-structed 

worlds with respect to which truth can be evaluated
• Model = mathematical abstraction that fixes the truth/falsehood of every 

relevant sentence
• Possible models are just all possible assignments of variables in the 

environment
• We say that a model m “satisfies” sentence ! if ! “is true in” m

Or: “m is a model of !”
M(!) is the set of all models of !



Models and Entailment
Entailment means that one thing follows from another:

KB ⊨ "
Knowledge base KB entails sentence "

iff " is true in all worlds/models where KB is true
KB ⊨ " iff M(KB) ⊆ M(")

e.g., KB contains “Giants won” and “Red won” entails ”Giants or Reds won”
x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., syntax) that is based 
on semantics. 
Note: brains process syntax (or some sort).



Quick Exercise
Given two sentences ! and ", what does this mean:

! ⊨ "

• ! entails  "
• M(!) ⊆ M(")
• " is satisfied in all models of !.

• " may be satisfied in other models (as well).  

• ! is stronger assertion than ".  



Hands on: Entailment in the Wumpus World

Situation after detecting nothing in 
[1, 1], moving right, breeze in [2,1]

Consider possible models for ?s 
assuming only pits

3 Boolean choices ⇨ 8 possible models 



Wumpus Models

KB = Wumpus-world rules + observations



Wumpus Models

KB = Wumpus-world rules + observations, !1 = “[1,2] is safe” 
KB ⊨ !1, proved by model checking



Wumpus Models

KB = Wumpus-world rules + observations, !2 = “[2,2] is safe”,
KB ⊭ !2



From Entailment to Logical Inference
Entailment can be used to derive logical conclusions

i.e., carry out logical inference
A straightforward algorithm to carry out inference:

Model Checking
Model checking enumerates all possible models to check that ! is true in all 
models where KB is true.  i.e., M(KB) ⊆ M(!) 

To understand entailment and inference: haystack and needle analogy
Consequences of KB are a haystack, ! is a needle.
Entailment = needle in haystack
Inference = finding it

We need inference procedures to derive ! from a given KB.



Inference
KB ⊢i " = sentence " can be derived from KB by procedure i

Soundness: inference procedure i is sound if
whenever KB ⊢i ", it is also true that KB ⊨ " (does not make stuff up)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost 
anything of interest, and for which there exists a sound and complete inference 
procedure.

Completeness: inference procedure i is complete if
whenever KB ⊨ ", it is also true that KB ⊢i " (finds the needle in haystack)

That is, the procedure will answer any question whose answer follows from what is 
known by the KB.

First step, propositional logic.



Propositional Logic: Syntax
Propositional logic is the simplest logic – illustrates basic ideas

Atomic sentences consist of a single propositional symbol
e.g., Propositional symbols P1, P2, etc. are atomic sentences

Two propositions with fixed meaning: True and False

Each such symbol stands for a proposition that can be true or false.
e.g., W1,3 stands for proposition that Wumpus is in [1,3]

Complex sentences build over atomic ones via connectives:
negation, conjunction, disjunction, implication, biconditional



Propositional Logic: Syntax
If S is a sentence, ¬S is a sentence (negation)

A (positive) literal is an atomic sentence; a (negative) literal is a negated atomic sentence

If S1 and S2 are sentences, S1 ⟹ S2 is a sentence (implication/ conditional)
S1 is called premise/antecedent;  S2 is called conclusion or consequent
Implication also known as rule or if-then statement

If S1 and S2 are sentences S1 ∧ S2 is a sentence (conjunction)
S1 and S2 are called conjuncts

If S1 and S2 are sentences S1 ∨ S2 is a sentence (disjunction)
S1 and S2 are called disjuncts

If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)



Propositional Logic: Semantics (Backus-Naur Form (BNF)

BNF is an ambiguous formal grammar for propositional logic

Sentence → AtomticSentence | ComplexSentence

We add operator precedence to disambiguate

AtomicSentence → True | False | P | Q | ... 

ComplexSentence → (Sentence) | [Sentence] | ¬Sentence | Sentence ∧ Sentence …

Operator precedence (from highest to lowest):   ¬,  ∧,  ∨,  ⟹,  ⇔



Propositional Logic: Semantics
Each model specifies true/false for each 
propositional symbol

e.g., P1,2 P2,2 P3,1

true true false

Rules for evaluating truth with respect to a model m:
¬S is true iff S S is false

S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1⟹ S2 is true iff S1 is false or S2 is true
i.e. is false iff S1 is true and S2 is false

S1⇔ S2 is true iff S1⟹ S2 is true and S2⟹S1 is true

This specific model: m1 = {P1,2 = true, P2,2 = true, P3,1 = false) 
23 = 8 possible models, feasible to enumerate

¬P1,2 ∧ (P2,2 ∨ p3,1) = true ∧ (false ∨ true) = true ∧ true = true 



Truth Table for Connectives

P Q ¬P P ∧ Q P ∨ Q P ⟹ Q P ⇔ Q
false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true



Wumpus World Sentences in Propositional Logic
Let Pi,j be true if there is a pit in [i, j]
Let Bi,j be true if agent is in [i, j] and perceives a breeze
Let Wi,j be true if there is a Wumpus in [i, j]
Let Si,j be true if agent is in [i, j] and perceives a stench
… you can define other atomic sentences

Rules in KB: “Put cause breezes in adjacent squares” eqv. to “Square is breeze iff adjacent pit”.

Percept sentences part of KB:
No pit, no breeze in [1, 1], but breeze perceived when in [2, 1]

R1 : ¬P1,1;    R4 : ¬B1,1 R5:  B2,1

R2 : B1,1 ⇔ (P1,2 ∨ P2,1)
R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)



Truth Tables for Inference: Model Checking by Enumeration

Enumerate rows (different assignments to symbols); rows are possible models
If KB is true in a row/model, check that ! is true, if not, entailment does not hold
If entailment not broken over all rows where KB is true, then ! is entailed

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB
false
false
…
false

false
false
…
true

False
False
…
false

False
False
…
false

False
False
…
false

False
False
…
false

False
True
…
false

true
True
…
true

True
True
…
true

true
False
…
false

true
True
…
true

false
False
…
true

False
False
…
false

False
False
False

true
True
true

False
False
False

False
False
false

False
False
false

False
True
true

True
False
true

True
True
true

True
True
true

True
True
true

True
True
true

True
True
true

True
True
true

False
…
true

True
…
true

False
…
true

False
…
true

True
…
true

False
…
true

False
…
true

True
…
false

False
…
true

False
…
true

True
…
false

True
…
true

False
…
false



Inference by Enumeration
function TT-Entails?(KB, !) returns true/false

Inputs: KB (the knowledge base), a sentence in proposition logic
!, the query, a sentence in propositional logic

symbols  ← a list of the propositional symbols in KB and !
Return TT-Check-All(KB, !, symbols,[])

function TT-Check-All(KB, !, symbols, []) returns true/false
if Empty?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE(!, model)
else return true;

else do
P ← First(symbols); rest ←Rest(symbols)
return TT-Check-All(KB, !, rest, Extend(P, true, model)) and

TT-Check-All(KB, !, rest, Extend(P, false, model))

O(2n) for n symbols, problem is co-NP-complete.



Proof Methods
Proof methods divide into (roughly) two kinds:

Model checking:
• Truth table enumeration (always exponential in n)

• Improved backtracking, e.g., Davis-Putnam-Logemann-Loveland

• Backtracking with constraint propagation, backjumping

• Heuristic search in model space (sound but incomplete) e.g., min-conflicts, etc.

Theorem Proving/Deductive Systems: Application of inference rules
• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications

• Typically requires translation of sentence into a normal form



End of first part of Chap 7



Logical Equivalence
Two sentences are logically equivalent iff true in same models:
! ≡ " if and only if a ⊨ " and " ⊨!

(! ∧ ")

Proof = a sequence of inference rule applications
Typically requires translation of sentence into a normal form


