Artificial Intelligence

First Order Logic

CS 444 – Spring 2019 Dr. Kevin Molloy Department of Computer Science James Madison University

Inference-based Agent in Wumpus World

A wumpus-world agent using propositional logic:

$$\begin{array}{l} \neg \mathsf{P}_{1,1} \\ \neg \mathsf{W}_{1,1} \\ \mathsf{B}_{x,y} \Leftrightarrow (\mathsf{P}_{x,y+1} \lor \mathsf{P}_{x,y-1} \lor \mathsf{P}_{x+1,y} \lor \mathsf{P}_{x-1,y}) \\ \mathsf{S}_{x,y} \Leftrightarrow (\mathsf{W}_{x,y+1} \lor \mathsf{W}_{x,y-1} \lor \mathsf{W}_{x+1,y} \lor \mathsf{W}_{x-1,y}) \\ \mathsf{W}_{1,1} \lor \mathsf{W}_{1,2} \lor \dots \lor \mathsf{W}_{4,4} \\ \neg \mathsf{W}_{1,1} \lor \neg \mathsf{W}_{1,2} \\ \neg \mathsf{W}_{1,1} \lor \neg \mathsf{W}_{1,3} \\ \end{array}$$

64 distinct proposition symbols, 155 sentences.

Pros and Cons of Propositional Logic

<u>PROS</u>

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
- Propositional logic is compositional: meaning $B_{1,1} \wedge P_{1,2}$ is derived from the meaning of $B_{1,1}$ and $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context).

<u>CONS</u>

Propositional logic has very limited expressive power (unlike natural language). e.g., cannot say "pits cause breezes in adjacent squares", except by writing one sentence for each square.

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains:

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, ...
- **Relations**: red, round, bogus, prime, brother of, isde, part of, has color,...
- Functions: father of, best friend of, third inning of, one more than, end of ...

Logics in General

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	Facts	true/false/unknown
First-order logic	Facts, objects, relations	true/false/unknown
Temporal logic	Facts, objects, relations, time	true/false/unknown
Probability theory	Facts	Degree of belief
Fuzzy logic	Facts + degree of truth	Known internal value

Syntax of FOL: Basic Elements

- Constants KingJohn, 2, UCB, ...
- Predicates Brother, >, ...
- Functions Sqrt, LeftLegOf, ...
- Variables x, y, a, b, ...
- Connectives $\land \lor \lor \neg \Rightarrow \Leftrightarrow$
- Equality =
- Quantifiers ∀ ∃

Atomic Sentences

Atomic Sentence = $predicate (term_1, ..., term_n)$ or $term_1, ..., term_n$

Term = function(term₁, ..., term_n) or constant or variable

e.g., Brother (KingJohn, RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

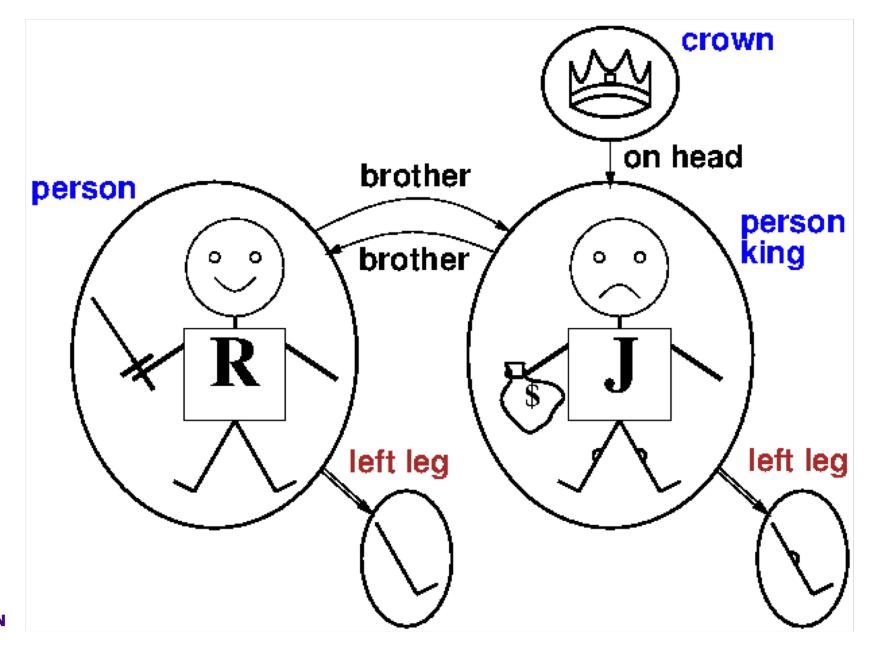
Complex Sentences

Complex sentences are made from atomic sentences using connectives.

 $\neg S, \quad S_1 \land S_2, \qquad S_1 \lor S_2 \qquad S_1 \Longrightarrow S_2, \qquad S_1 \Leftrightarrow S_2$

e.g., Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) >(1,2) $\lor \le (1,2)$ >(1,2) $\land \neg >(1,2)$

Models for FOL



Truth in First-order Logic

Sentences are true with respect to a model and an interpretation

Model contains \geq 1 object (domain elements) and relations amongst them

Interpretation specifies referents for:

- Constant symbols → objects
- Predicate symbols → relations
- Function symbols → functional relations

An atomic sentence predicate (term₁, ..., term_n) is true

iff the objects referred to by $term_1$, ..., $term_n$ are in the relation referred to by the predicate

Models for FOL

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on *n* objects For each constant symbol C in the vocabulary For each choice of referent for C from *n* objects

Computing entailment by enumerating FOL models is not easy!

Universal Quantification

∀ <variables> <sentence>

Everyone at JMU is smart:

 $\forall x At(x,JMU) \Longrightarrow Smart(x)$

∀ x P is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

- (At(KingJohn, JMU) \implies Smart(KingJohn))
- $\land \qquad (At(Richard, JMU) \Longrightarrow Smart(Richard))$
- $\land \qquad (At(Berkeley, JMU) \Longrightarrow Smart(Berkeley))$

Λ...

A common Mistake to Avoid

Typically, \implies is the main connective with \forall

Common mistake: using \land as the main connective with \forall : $\forall x At(x, JMU) \land Smart(x)$ means

"Everyone is at JMU and everyone is smart".

Existential Quantification

∃ <variables><sentence>

Someone at Stanford is smart:

$\exists x At(x, Stanford) \land Smart(x)$

 $\exists x P$ is true in a model *m* iff P is true with *x* being *some* possible object in the model.

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))

∨ (At(Richard, Stanford) ∧ Smart(Richard))

∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

Another Common Mistake to Avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \implies as the main connective with \exists :

 $\exists x At(x, Stanford) \Rightarrow Smart(x) is true if$

there is anyone who is not at Stanford.

Properties of Quantifiers

 $\forall x \forall y \qquad \text{ is the same as } \qquad \forall y \forall x$

\exists x \exists yis the same as\exists y \exists x

Loves(x, y)

 $\exists x \forall y$ is NOT the same as $\forall y \exists x$

"There is a person who is loves everyone in the world).

 $\forall y \exists x$ Loves(x, y) "Everyone is loved by at least one person"

Quantifier duality: each can be expressed using the other

∀ x Likes(x, IceCream) ¬∃x ¬ Likes(x, IceCream)

∃ x Likes(x, Broccoli)

 $\neg \forall x \neg Likes(x, Broccoli)$

 $\exists x \forall y$

Fun with Sentences

Brothers are siblings

"Sibling" is symmetric

 $\forall x, y Brother(x,y) \Longrightarrow$ Sibling (x, y)

 $\forall x, y \text{ Sibling}(x,y) \Longrightarrow \text{ Sibling}(y,x)$

One's mother is one's female parent

 $\forall x, y Mother(x,y) \Leftrightarrow (Female(x) \land Parent(x,y))$

A first cousin is a child of a parent's sibling

 $\forall x, y \text{ FirstCousin}(x,y) \Leftrightarrow \exists p, ps \text{ Parent}(p, x) \land \text{ Sibling}(ps, p) \land \text{ Parent}(ps,y)$

Equality $term_1 = term_2$ is true under a given interpretation If and only if $term_1$ and $term_2$ refer to the same object

e.g., 1 = 2 and ∀ x X(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

e.g. definition of (full) Sibling in terms of Parent:

 $\forall x, y \text{ Sibling}(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg(m = f) \land \\ Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Interacting with FOL KBs

Suppose a Wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5.

- Tell (KB, Percept([Smell, Breeze, None], 5))
- Ask(KB, \exists a Action (a, 5))

i.e., does KB entail any particular actions at t = 5. Answer: Yes, $\{a/Shoot\} \leftarrow substitution (binding list)$

Given a sentence S and a substitution σ ,

 S_{σ} = denotes the result of plugging σ into S, e.g.

S = Smarter(x, y)

 $\sigma = \{x/\text{Liz}, y/\text{Kevin}\}$

 $S\sigma$ = Smarter(Liz, Kevin)

Ask(KB, S) returns some/all σ such that KB \models S σ

JAMES MADIS

Knowledge Base for the Wumpus World

"Perception"

 \forall b, g, t Percept([Smell, b, g], t) \Rightarrow Smelt(t) \forall s, b, t Percept ([s, b, Glitter], t) \Rightarrow AtGold(t)

"Reflex" \forall t AtGold(t) \Rightarrow Action(Grab, t)

Reflex with internal state: do we have the gold already? \forall t At Gold(t) $\land \neg$ Holding(Gold, t) \Rightarrow Action(Grab, t)

Holding(Gold, t) cannot be observed

Keeping track of change is essential.

Deciding Hidden Properties

Properties of locations:

 $\forall x, t At(Agent, x, t) \land Smelt(t) \Longrightarrow Smelly(x)$ $\forall x t At(Agent, x, t) \land Breeze(t) \Longrightarrow Breezy(x)$

Squares are breezy near a pit (Diagnostic rule – infer cause from effect):

 \forall y Breezy(y) $\Longrightarrow \exists$ x Pit(x) \land Adjacent(x, y)

Causal rule – infer effect from cause):

 $\forall x, y \operatorname{Pit}(x) \land \operatorname{Adjacent}(x, y) \Longrightarrow \operatorname{Breezy}(y)$

Neither of these is complete, e.g., the causal rule doesn't say whether squares far away from pts can be breezy

Definition for the Breezy predicate:

 \forall y Breezy(y) \Leftrightarrow [\exists x Pit(x) \land Adjacent(x, y)]

Keeping Track of Change

Facts hold in situations, rather than eternally.

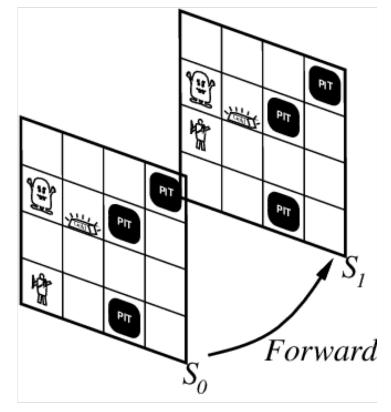
e.g., Holding(Gold, Now) rather than just Holding(Gold)

Situational calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate.

e.g., now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s



Preliminaries on Situation Calculus

Situation calculus is a logic formalism designed for representing and reasoning about dynamical domains.

a dynamic world is modeled as progressing through a series of situations as a result of various actions being performed within the world

Introduced by John McCarthy in 1963. McCarthy described a situation as a state. Ray Reiter corrected this (1991):

"A situation is a finite sequence of actions. Period. It's not a state, its not a snapshot, it's a history".

Describing Actions I

"Effect" axiom – describe changes due to action \forall s AtHold(s) \Rightarrow Holding(Gold, Result(Grab,s))

"Frame" axiom – describe non-changes due to action \forall s HaveArrow(s) \Rightarrow HaveArrow(Result(Grab,s))

Frame problem: find an elegant way to handle non-change:

- a) Representation avoid frame axioms
- b) Inference avoid repeated "copy-vers" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats – what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences – what about the dust on the gold, wear and tear on gloves, ...

Describing Actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards ⇔ [an action made P true ∨ P true already and no action made P false]

For holding the gold:

 \forall a, s Holding (Gold, Result(a, s)) \Leftrightarrow

[(a = Grab ∧ AtHold(s)) ∨ (Holding(Gold, s) ∨ a ≠ Release)]

Making Plans (a better way)

Represents plans as action sequences [a₁, a₂, ..., a_n]

PlanResult(p, s) is the result of executing p in s

Query: Ask (KB, $\exists p \text{ Holding}(Gold, PlanResult(p, S_0))$

Has the solution: s/ Result(Grab, Result(Forward, S₀))

Definition of PlanResult in terms of Result:

∀ s PlanResult([], s) = s

∀ a, p, s PlanResult([a|p], s) = PlanResult(p, Result(a,s))

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner.

