
Artificial Intelligence

CS 444 – Spring 2019
Dr. Kevin Molloy

Department of Computer Science
James Madison University

Constraint Satisfaction Problems (CSPs)
(Part 2)

Constraint Satisfaction Problems (CSPs)

CSPs:

Standard Search
Problem:

State is a "black box" – any old data structure that supports
a goal test, eval, successors, etc.

State is defined by variables Xi with values from domain Di.
Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

Varieties of Constraints

Higher-order constraints involve 3 or more variables.
e.g. cryptarithmetic column constraints

Unary constraints involve a single variable. e.g., SA ≠ green

Strong vs soft constraints

Preference (soft constraints)
• e.g., red is better than green
• Often representable by a cost for each variable assignment

⟹constrained optimization problems

Binary constraints involve pairs of variable. e.g., SA ≠ WA

Pruning the search space

Number of possible
color assignments? O(dn) O(36)= 729

If South Australia
is assigned blue?

O(35)= 243

Can we do better?

Since South Australia is a neighbor to
all other territories, we can eliminate
blue from their domains.

O(25)= 32
This is an 87% reduction.

Real-world CSPs
• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where
• Transportation schedules
• Factory scheduling
• Floor planning

Real-world problems almost always involve real-valued variables

Standard Search Formulation (Incremental)
Let's start with the straightforward approach, then fix it.
States are defined by the values assigned so far:
• Initial state: the empty assignment, 0
• Successor function: assign a value to an unassigned variable that does not

conflict with current assignments.
• Fails if no legal assignments (a dead end, not fixable!)
• Goal test: the current is complete

1. This is the same for all CSPs !
2. Every solution appears at depth n with n variables (we can use DFS)
3. Path is irrelevant, so can also use the complete-state formulation
4. b = (n-L)d at depth L, hence n!dn leaves (bad news)

Backtracking Search
Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
⟹ b = d (branching factor = depth) and there are dn leaves

Depth-first search for CSPs with single-variable assignments is called
backtracking search

Can solve n-queens for n ≈ 25 in a reasonable amount of time.

Backtracking Search
function Backtracking-Search(csp) returns solution/failure

return Backtrack({}, csp)

function Backrack(assignment, csp) returns solution/failure
If assignment is complete then return assignment
Var ← Select-Unassigned-Variable(csp, assignment)
For each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment then
add {var = value} to assignment
Inferences ← INFERENCE(var, assignment, csp)
If inferences ≠ failure then

Add inferences to assignment
Result ← Backtrack(assignment, csp)
If result ≠ failure then

return result
Remove {var = value} and inferences from assignment
Return failure

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

Improving Backtracking Efficiency

General purpose methods can give huge gains in speed:
1. Which variable should be assigned next? [Select-Unassigned-Variable]
2. In what order should its values be tried? [Order-Domain-Values]
3. Can we detect inevitable failure early? [Inference]
4. Can we take advantage of problem structure?

Minimum Remaining Values

Minimum remaining values (MRV) for:

var ← SELECT-UNASSIGNED-VAR(csp, assignment)

Choose the variable with the fewest legal values to prune the search tree.

Also called "most constrained variable" or "fail-first heuristic"

… but MRV heuristic does not help in selecting the first variable.

Degree heuristic
Tie-breaker among MRV variables

Degree heuristic:
Choose the variable with the most constraints on remaining variables

var ← SELECT-UNASSIGNED-VAR(csp, assignment)

Called degree heuristic because information is available in constraint graph

Attempts to reduce branching factor on future choices

Least Constraining Value Heuristic
Least constraining value heuristic for:

Var ← Order-Domain-Values(var, assignment, csp)

Goal is to reach on complete assignment fast.
Combining above heuristics make 1000 queens feasible
When all solutions/complete assignments needed, LCV is irrelevant

Given a variable, choose the least constraining value:
Selects value that rules out the fewest values in the remaining variables:

Inference
Idea: Infer reductions in the domain of variables

Algorithms: forward checking, AC-3

When: Before and/or during the backtracking search itself

How: Constraint propagation

Simplest Form of Inference: Forward Checking
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Simplest Form of Inference: Forward Checking
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Simplest Form of Inference: Forward Checking
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Constraint Propagation
Forward checking propagates information from assigned to unassigned variables:

Forward checking establishes
arc consistency

Whenever a var X is assigned, domains of neighbors Y of X in constraint graph are
reduced
For each unassigned var Y that is connected to X by a constraint, delete from Y's
domain any value that is inconsistent with the value choosen for X

Constraint Propagation
Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection of ALL failures

BUT: NT and SA cannot both be blue!
Constraint propagation enforces constraints locally at each step (over and over), and
does not "chase" arc consistency
When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may
also become inconsistent (e.g., NT and SA).

Constraint Propaga-on
Forward checking propagates informa4on from assigned to unassigned variables, but
doesn't provide early detec4on of ALL failures

BUT: NT and SA cannot both be blue!
Constraint propagation enforces constraints locally at each step (over and over), and
does not "chase" arc consistency
When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may
also become inconsistent (e.g., NT and SA).

Back to Arc Consistency
Simplest form of constraint propagation makes each arc consistent
X → Y is consistent iff for every value of x of X there is some allowed value y of Y

Back to Arc Consistency
Simplest form of constraint propagation makes each arc consistent
X → Y is consistent iff for every value of x of X there is some allowed value y of Y

Back to Arc Consistency
Simplest form of constraint propagation makes each arc consistent
X → Y is consistent iff for every value of x of X there is some allowed value y of Y

If a variable loses a value, its neighbors in the constraint graph need to be
rechecked

Iterative Algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete"
states (all variables assigned)

To apply to CSPs:
Allow states with unsatisfied constraints
Operators reassign variable values

Probabilistic Search and Energy Guidance for Biased Decoy Sampling in Ab-initio Protein Structure Prediction.
Molloy et al. IEEE Trans in Computational Biology and Bioinformatics, 2013.

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
Choose value that violates the fewest constraints
i.e., hill-climber with h(n) = total number of violated constraints

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 state)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

4 Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4 Domains Di = {1, 2, 3, 4}

Constraints:

Qi ≠ Qj (cannot be in the same row)

| Qi – Qj| ≠ |i – j| (or same diagonal)

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q2) are {(1,3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2) }

Min-conflict
function Min-Conflict(csp, max-steps) returns solution/failure

current ← an initial complete assignment for csp
for i = 1 to max_steps do

if current is a solution for csp then return current
var ←random selected conflict variable
value ← the value v for var that minimizes Conflicts(var, v, current, csp)
set var = value in current

Return failure

Performance of Min-conflicts

Given random initial state can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio.

! = #$%&'()* +)#,-(./#-,
#$%&'()* 0.(/.&1',

CSP Summary
CSPs are a special kind of search problem:

States defined by values of a fixed set of variables

Goal test defined by constraints on variable values

• The CSP representation allows analysis of problem structure

• Backtracking = DFS with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

• Tree-structured CSPs can be solved in linear time

• Iterative min-conflicts is usually effective in practice

Define
Take a minute a write down a definition for the following:

• Backtracking search

• Min-conflicts
• Cutset cycle

