Controlling Physical Systems

0.1 Introduction

Computer programmers are accustomed to instructions that operate instantaneously and
reliably. Both assumptions fail when writing code that controls a physical system. In this
tutorial we will take the first steps towards writing programs that can reliably control physical
systems in an unpredictable world.

0.2 Open Loop Control

Consider the problem of programming a controller for the self-driving locomotive in Figure
1. In this figure x indicates the starting position of the locomotive and ¢ indicates the goal
location.

Our first attempt at developing a controller might look something like the following:

Algorithm 1: Open Loop Control Algorithm

def open_loop(x, g):

Calculate the distance to travel.
d =g - x

Cover that distance im one second.
for one second:
drive forward at a speed of d/second

[1

[

9

Figure 1: A self-driving locomotive.

v-1.1 ©2019 Nathan Sprague all rights reserved 1/13

Figure 2: A self-driving locomotive.

Algorithm 1 is an example of an open loop controller. Open-loop control involves sending
a sequence of control signals that, based on our understanding of the system we are controlling,
should move the system into the target configuration.

There are problems with Algorithm 1. First, locomotives are heavy. The success of this
algorithm relies on the unrealistic assumption that we can instantaneously changing the speed
from zero to the desired value of d/s. Second, even after the locomotive reaches the target
speed, factors like friction and mechanical imperfections will make it impossible to perfectly
maintain that speed. Over time, small errors in speed will result in significant errors in the
final position.

0.3 Closed Loop Control

The problems with the naive controller in Algorithm 1 can be avoided by using closed loop
control. Closed loop controllers continuously monitor the current error in the system and
update the control signal to push the error toward zero. This approach tends to be more
reliable because the controller responds to the actual state of the system and is able to make
adjustments when the system fails to behave as expected.

The PID (Proportional, Inverse, Derivative) controller is the classic example of closed
loop control. The next several sections will introduce the PID controller by describing each
of the three terms. The following notation, illustrated in Figure 2, will be useful.

v-1.1 (©2019 Nathan Sprague all rights reserved 2 /13

x(t) The state of the system at time ¢. In the case of the loco-

motive this is the position on the track. More generally, this
could describe any state variable that we are interested in
controlling. This could be the temperature of a room or the
altitude of a rocket.
For now, we will assume that state information is provided
by a reliable sensor. In future tutorials we will consider the
problem of estimating this value when sensors are absent or
unreliable.

g(t) Goal state at time t¢.

e(t) Error at time t.

We will let e(t) = g(t) — z(t). In the case of the locomotive,
this value is zero when the locomotive is at the goal position,
positive when the locomotive is to the left of the goal, and
negative if the locomotive overshoots and ends up to the right
of the goal.

u(t) The control signal at time ¢. The interpretation of u(t) de-

pends on system we are attempting to control. In some cases
u(t) might represent a low-level control signal like the voltage
sent to a motor. In other cases we may be working with a
robot that allows us to directly specify a desired velocity or
acceleration.
In the case of our hypothetical locomotive, we will assume
we have an API provides a throttle function that takes a
number in the range (-100, 100) where +100 represents “full
speed ahead” and -100 represents “full reverse”.

0.3.1 Proportional Control

Mathematically, we can think of the problem of developing a controller as finding an expression
for u(t) in terms of e(t). One simple possibility is to follow the intuition that magnitude of
the control signal should be proportional to the current error. In the locomotive example,
this means we should apply more throttle when the locomotive is far from the goal location,
and ease off as the locomotive gets closer. This idea can be expressed as follows:

u(t) = Kpe(t) (1)

The value K, is referred to as a gain term. This is a constant that determines how large
the control signal will be for a particular error value. Doubling the gain doubles the magnitude
of the control signal. Developing a successful controller involves selecting an appropriate gain
value, either by analyzing the system or through trial and error.

Algorithm 2 shows how we can implement a proportional controller for the locomotive
example.

v-1.1 (©2019 Nathan Sprague all rights reserved 3 /13

Kp =10.0

1.0 ,
- 05} Reaches goal.
$
S 00l =\ — — = = — — — — — — — — — — -
g
= 0.5 Starts 1m from
< Y[thegoal N
—1.0 l l l l
0 1 2 3 4 5
t (seconds)
Kp =100.0
1.0 T T T I
® 0.5]
~
5
I e e e Nl N U
= o5 -
L8]
_10 l l l l
0 1 2 3 4 5

t (seconds)

Figure 8: Locomotive position error over time for two different values of Kp.

Algorithm 2: Proportional Control Algorithm

def p_controller(train, g, K_P):
while True:
e = g - train.x
u = K_P *x e
train.throttle (u)

Figure 3 shows the result of using a proportional controller to implement our locomotive
controller using two different values of Kp.

These results are not very satisfying. The locomotive overshoots the goal and then over-
corrects with the result that the locomotive drives back and forth indefinitely. Changing the
value of Kp doesn’t solve the problem. It only changes the period of the oscillations.

0.3.2 Adding a Derivative Term

One problem with our proportional controller is that it only considers the position of the
locomotive, not the speed. Intuitively, it seems that if the error is already deceasing quickly
we should reduce the control signal to avoid overshooting the goal. Conversely, if the error
is still increasing in spite the proportional control, we should further increase the magnitude
of the control signal. These intuitions can be captured by adding a derivative term to the
controller:

v-1.1 (©2019 Nathan Sprague all rights reserved 4 /13

derivative term

de(t
u(t) = Kpe(t) + | Ky Z(t) (2)
de(t))
The term ———= describes the rate of change in the error. This is negative if the error is

decreasing and positive if the error is increasing. The value K is a gain that is used to tune
the impact of the derivative term.
de(t)

Using the derivative term requires us to know ——=, but sensors don’t usually provide

direct access to this value. Instead, we need to estimate it by tracking the change in error
over time. Even though the physical systems we are controlling operate continuously, our
algorithms necessarily perform their steps at discrete time intervals. Assuming our controller
is updated every At seconds, we can estimate the derivative as the slope between the two
most recent error values:

de(t) _e(t) —e(t —At)
et~ At)

Discrete approximations like this are common in robotics and in other areas of scientific
computing but they aren’t always made explicit. It takes some experience to get comfortable
moving from continuous to discrete formulations. Algorithm 3 illustrates how we can use
the discrete approximation in Equation 3 to implement the control algorithm described in
Equation 2.

Algorithm 3: Proportional Derivative Control Algorithm

def pd_controller(train, g, K_P, K_D):

e_prev = g - train.x
while True:
e = g - train.x

dedt = (e - e_prev) / train.dt # Equation 1.3
u = K_P x e + K_D * dedt

train.throttle (u)

e_prev = e

Figure 4 shows the result of introducing the derivative term in our controller. For ap-
propriate values of Kp The oscillations are damped, and the locomotive settles at the goal
location.

Stop and Think

e The while loop in Listing 3 does not include any explicit delays. It is written under the
assumption that methods called on the train object will only return after an appropriate
delay. What could go wrong if this is not the case? In other words, what will happen if
the execution time of the loop is much shorter than train.dt?

v-1.1 (©2019 Nathan Sprague all rights reserved 5/13

— Kp—>%
— Kp=20|
;g — Kp=60
(5]
£ N~ —
—1.0 | | | |
0 1 2 3 4 5
t (seconds)
Figure 4: Locomotive position error over time for three different values of Kp.
/\ 2
o(p..... 2
e(t)
Figure 5: Locomotive on a hill.
Droop

What happens when we try to apply the same controller when the locomotive is located on a
slight incline as shown in Figure 57 The results are displayed in Figure 6. In this situation the
locomotive never quite reaches the goal position. The locomotive comes to rest at the point
where the proportional force applied by the controller is exactly counterbalanced by gravity.
Increasing K, will move the stationary point closer to the goal, but this controller will never
drive the error all the way to zero.

The situation where the proportional term is not sufficient to drive the error term to zero
is sometimes referred to as “droop”.

0.3.3 Adding an Integral Term

The problem of droop can be addressed by adding one more term to our controller:

integral term

de(t)
dt

u(t) = Kpe(t) +

Where the derivative term allows the controller to look forward in time, the integral term
allows the controller to look backwards in time. The integral fg e(T)dr essentially “stores up”

v-1.1 (©2019 Nathan Sprague all rights reserved 6 /13

Kp =50.0,Kp = 20

10 I I I I
0.5 |-]
T
3 I
S 00} — — —m = - e D - - 72— - - -
s /
T
—05 kL “Droop” i
—1.0 | | | |
0 1 2 3 4 5

t (seconds)
Figure 6: Locomotive position error over time for the PD locomotive controller when the

locomotive is on an incline. The locomotive stops short of the goal at the point where the

control output is counter-balanced by gravity.

the error that the system sees over time. As long as the error fails to reach zero, fg e(r)dr
will steadily increase in magnitude.

As with the derivative, the integral value is not available directly, but must be estimated
from discrete samples. In this case, the integral can be estimated using a summation that

adds the current error value at each time step:

of steps before time ¢

Error at time step 4 (5)

v-1.1 (©2019 Nathan Sprague all rights reserved 7/13

Kp =50.0,K; =40, Kp =20
1.0 T T ! L
— slope = 5°

— slope = 10°

0.5 — slope =15° H

o
o

e(t)(meters)

|
o
o

t (seconds)

Figure 7: Locomotive position error over time for a different slopes. With appropriate gain
values the PID controller reliably moves the locomotive to the goal location.

Algorithm 4: PID Control Algorithm
def pid_controller(train, g, K_P, K_I, K_D):

e_prev = g - train.x
e_sum = 0 # accumulator for integral term
while True:

e = g - train.x

e_sum = e_sum + e * train.dt # From Equation 1.5

dedt = (e - e_prev) / train.dt # Equation 1.3
u = K_P *x e + K_I * e_sum + K_D * dedt
train.throttle (u)

e_prev = e

Algorithm 4 illustrates a complete PID controller. Figure 7 shows the result of adding an
integral term to our locomotive controller. With an appropriate value of Ky, the resulting
controller reliably moves the locomotive the goal regardless of the slope.

Stop and Think

e Practical implementations of PID controllers often place a cap on the amount of error
that can be accumulated in the integral term of the controller. Why do you think this
is necessary? What could go wrong if the controller were to start out far from the goal
configuration, accumulating a large amount of error before the goal is reached?

e The process outlined above for tuning the PID gain terms is ad-hoc: we just experi-
mented with different values until the behavior looked right. A more rigorous approach
would require a quantitative way to evaluate the success of a particular PID controller.

v-1.1 (©2019 Nathan Sprague all rights reserved 8 /13

Can you think of some quantitative measurements that might be useful for comparing
two controllers?

e Consider the following graph of error as a function of time. Assuming that this system
is being controlled by a PID controller, how would you suggest what the gain terms be

modified?
0.5
0.4
0.3
£ 02

0.1
0.0

04,

e Consider the following graph of error as a function of time. Assuming that this system
is being controlled by a PID controller, how would you suggest what the gain terms be
modified?

0.4 Proportional Robot Control

You may feel that a self-driving locomotive is a disappointingly simple robot: all it can do is
move backward and forward along a linear track. Don’t fear, these tutorials will mostly focus
on mobile robots that are able to move freely in multiple dimensions. In this section we will
develop a proportional controller for driving a wheeled robot to a goal location as illustrated
in Figure 8.

Robot
’l Goal
— |

Figure 8: Differential drive robot.

v-1.1 (©2019 Nathan Sprague all rights reserved 9 /13

This is an example of a differential drive robot. This type of robot has two independently
controllable wheels. When both wheels are rotated in the same direction at the same speed
the robot moves directly forward or backward. If both wheels are turned in opposite directions
the robot will rotate in place. The robot can follow a curved path by rotating each wheel at
a different speed.

Since it is not intuitive to steer a differential drive robot by directly controlling the wheel
velocities, the driver software for such robots often accepts commands specifying two velocity
values: v and w, where v is the forward velocity in meters/second and w is the rotational
velocity in radians/second.

N @’\@H

Figure 9: Overhead view of the robot and goal.

Figure 9 illustrates the parameterization of the control problem. The pose of the robot
is specified with three numbers: (z,,y,,©,), where the z;, and y, coordinates specify the
position of the center of the robot with respect to some fixed point in the room and ©, value
indicates the robot’s heading. Heading values (in radians) are in the interval [—m, 7], where
O, = 0 indicates that the robot is pointing along the z-axis with ©, increasing as the robot
turns counterclockwise. The value of ©, in figure Figure 9 is approximately 7 (or 45°).

We can solve this control problem by creating two separate proportional controllers that
will operate simultaneously: one controller to output a rotational velocity that turns the robot
toward the goal, the other to output a forward velocity that keeps the robot moving forward
until it reaches the goal.

The first step in developing the rotational controller is determining the desired angle for
the robot. The problem is illustrated in Figure 10. Determining ©,4 from the positions of the
robot and goal requires some trigonometry:

0, = tan* Yg — U (6)
Tg — Ty

Actually, this won’t quite give us what we want. Equation 6 doesn’t distinguish between
the case when both the numerator and denominator are positive and the case when they are
both negative. This means that a goal above and to the right of the robot will result in the
same angle as an object below and to the left. The math libraries for many programming
languages address this difficulty by providing a function named atan2 that takes the numer-
ator and denominator as separate arguments and correctly calculates the angle taking the

v-1.1 (©2019 Nathan Sprague all rights reserved 10 / 13

Figure 10: Goal angle calculations

signs of the arguments into account. A Python implementation might look something like the
following:

theta_g = math.atan2(y_g - y_r, x_g - x_T)

Given that we can calculate a target angle, our rotational controller can be specified using
the formula for a proportional controller (dropping the time index for clarity):

w = Kp, (05— 6;) (7)

Unfortunately, subtracting angles in a sensible way requires some caution. Consider the
situation in Figure 11. Naively calculating the error by subtracting the two angles gives us
91 — (—.97) = 1.87. Plugging this into our proportional controller will result in a hard
left turn. This isn’t exactly wrong: it s possible for the robot to point toward the goal by
turning to the left. However, it clearly makes more sense to select the smaller angle between
our current heading and the target heading. We will use the symbol © to indicate an angle
subtraction operation that has this effect. With this modification we can completely specify
the control scheme for the differential drive robot.

w=Kp,(0,66,) (8)

v =Kp,\[(g —)2 + (g —)2 (9)

Equation 9 expresses the idea that the robot’s forward velocity should be proportional to
its Euclidean distance from the goal. Since this velocity control is independent of the angle, the
robot may initially move away from the goal. We could address through a more complicated
control mechanism, but the point here is to illustrate a simple example of proportional control.
Figure 12 shows several example trajectories of a simulated differential drive robot under the
control scheme presented in Equations 8 and 9.

Notice that, unlike the locomotive example, it wasn’t necessary to include integral or
derivative terms in this controller. They weren’t needed because we were able to able to

v-1.1 (©2019 Nathan Sprague all rights reserved 11/ 13

Ay

0, =—-97

Figure 11: The robot can either turn .2w radians clockwise, or 1.8m radians counterclockwise
to face the goal. We want a difference operation that always returns the smaller angle.

Figure 12: FExample trajectories for a proportional controller that moves a differential drive
robot to a goal location. The robot images indicate the starting positions for seven simulated
navigation trials.

set the speed of the robot directly. This means we didn’t need to worry as much about
overshooting the goal or applying too little force to reach it. It often makes sense to start
with a pure proportional controller and add integral or derivative terms if they prove necessary.

0.5 Limitations of PID Controllers

PID control is widely used because it is simple to implement and can be applied in a wide
range of situations. We can use PID control even when we don’t have an accurate model
of the system we are controlling. In this tutorial we used trial and error to develop a PID
controller for a simulated locomotive. It wasn’t necessary to understand the physics involved:
we didn’t need to estimate frictional forces, we didn’t need an exact specification of the forces
created by the throttle. We only needed to tune the three gain parameters until we were

v-1.1 (©2019 Nathan Sprague all rights reserved 12 /13

satisfied with the performance.

The ad-hoc nature of PID control can also be seen as a disadvantage. PID controllers tend
to work well in practice, but they don’t provide any optimality guarantees. In cases where we
do have an accurate system model, it’s possible to develop more principled controllers that
explicitly minimize a cost function related to the quality of the solution. This could allow
us to create a controller that reaches the goal in the minimum time or with minimal energy
expenditure. Such controllers are beyond the scope of this tutorial, but the classic optimal
controller is the Linear Quadratic Regulator or LQR.

More significantly, the kind of low-level control discussed in this tutorial is obviously not
appropriate for complex control problems that extend over longer periods of time. A PID
controller will not save the day for the robot in Figure 13. Problems like this will require
planning algorithms of the sort described in later tutorials.

I_J_
T
LI L[=
__II_

Figure 13: A control problem that can’t be solved with the tools in this tutorial.

v-1.1 ©2019 Nathan Sprague all rights reserved 13 /13

	Introduction
	Open Loop Control
	Closed Loop Control
	Proportional Control
	Adding a Derivative Term
	Adding an Integral Term

	Proportional Robot Control
	Limitations of PID Controllers

