2.
Z P TAMES
NZMADISON

UNIVERSITY.



* Represent relative
locations using a graph
structure.

+ Good for high level
navigation
- Difficult to build
autonomously

- Not good for low-level
localization and
navigation
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* Store the geometric location of recognizable landmarks.
~ Maybe artificial beacons or markers.

~ Maybe distinctive environmental features.

-+ Memory-efficient
+ Allows precise localization
- Landmark mis-identification can cause problems

- May not be ideal for navigation: only landmark positions are
stored, not necessarily the positions of all obstacles



* Divide the environment into grid cells, maintain an
“occupied” probability for each cell.

- Memory intensive (particularly in 3D)

+ Good for navigation

+ Good for localization

+ Relatively simple to create autonomously



* Large occupancy grids can be expensive to store:

~ 100m x 100m map, 1cm resolution
~ 100,000,000 cells

* Quadtree is a more space-efficient alternative...



* Large occupancy grids can be expensive to store:

~ 100m x 100m map, 1cm resolution
~ 100,000,000 cells

* Quadtree is a more space-efficient alternative...

* Octree is the 3d generalization:

mE 01010010100 0X010]010]0)0)0)0.

+

http://en.wikipedia.org/wiki/File:Octree2.svg, http://creativecommons.org/licenses/by-sa/3.0/




* Relatively easy if we know the robot pose:

Increase occupied probability

Decrease occupied probability

H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AIMagazine,
pages 61-7/4, Summer 1988.


https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/676
https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/676

Recall the localization problem:

P(Xt‘ZO:ta u():t)

The SLAM problem is reassuringly familiar:

P(Xt7 m‘ZO:ta uO:t)

Where 1Ml represents the map.

Before we wanted a probability distribution over all possible robot poses.

Now we want a joint probability distribution over all possible robot poses and
all possible maps.

“Distribution over possible maps” is not as manageable as “distribution over poses”



* Prediction:

Bel™ (x¢,m) = /P(Xt | x¢ 1, uy)Bel(x¢_1,m)dx;_1

* Correction:

Bel(x:, m) = nP(z | x¢, m)Bel™ (x;, m)

Adapted from Simultaneous Localisation and Mapping (SLAM): Part 1 The Essential Algorithms,
Hugh Durrant-Whyte, 2006


http://www-personal.acfr.usyd.edu.au/tbailey/publications/slamtutorial1.htm

* Solutions fall into three families (in roughly
historical order)

- EFK SLAM
~ Particle-Filter SLAM
~ GraphSLAM



* Most appropriate for landmark-based maps.

* Problems:
~ Not clear how to use this for occupancy grids

~ The covariance matrix gets big as the number of
landmarks grows

~ Video Example


https://youtu.be/vCVS9WAffi4

* Covering the space of possible poses and maps
with particles is not practical:

~ "Pose particle”: 3-6 dimensions
~ “Map particle” for a (tiny) 10x10 grid: 100 dimensions

~ Joint map x pose particle: 300-600 dimensions



* Solution/Approximation:

~ Each pose particle has an associated map.

~ Each map is updated under the assumption that its
particle represents the correct pose.

~ The map may be landmark-based or occupancy grid-
based.
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Sum of all constraints:
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Thrun, Sebastian, and Michael Montemerlo. "The graph SLAM algorithm with applications to large-scale mapping of urban
structures." The International Journal of Robotics Research 25.5-6 (2006): 403-429.



* LOOP CLOSURES!!!
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