## CS354

Nathan Sprague

October 13, 2020

## Probabilistic State Representations: Continuous

(a)

(b)

(c)


Probabilistic Robotics. Thrun, Burgard, Fox, 2005
(d)


Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization All densities are represented by unimodal Gaussians.

## Probability Density Functions

Represent probability distributions over random variables:

- Properties:
- $f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- Interpretation:
- $P(a \leq x \leq b)=\int_{a}^{b} f(x) d x$


## Expectation, Variance

- Expectation (continuous) (also referred to as the "mean" or "first moment")

$$
\mu=\mathbb{E}[x]=\int x f(x) d x
$$

- Expectation (discrete)

$$
\mathbb{E}[X]=\sum_{1}^{n} P\left(x_{i}\right) x_{i}
$$

■ Variance (also referred to as the "second moment")

$$
\sigma^{2}=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]
$$

## Quiz 1

What is the expectation of this pdf?


## Quiz 2

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{1}^{n} P\left(x_{i}\right) x_{i} \\
& \sigma^{2}=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]
\end{aligned}
$$

Imagine we are rolling a four-sided die. The following probability distribution describes the probability for each number that we could roll:
$\mathrm{P}(\mathrm{X}=1)=.7$
$P(X=2)=.1$
$P(X=3)=.1$
$P(X=4)=.1$
What is the expected value of this distribution? What is the variance?

## Sample Mean and Variance

Expectation and variance are properties of distributions. We can also calculate the sample mean and the sample variance for a given data set:
$\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

- Sample mean

$$
m=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Sample variance

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}
$$

## Normal Distribution

$$
f(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(Normal because of the central limit theorem.) All distributions

## Vector-Valued State

- We'll need to generalize all of this to the case where the state of the system can't be represented as a single number.
- Use a vector $\mathbf{x}$ to represent the state.


## Covariance

$$
\operatorname{cov}(x, y)=\mathbb{E}\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]
$$

- Properties:
- $\operatorname{cov}(x, y)=\operatorname{cov}(y, x)$
- If $x$ and $y$ are independent, $\operatorname{cov}(x, y)=0$
- If $\operatorname{cov}(x, y)>0, y$ tends to increase when $x$ increases.
- If $\operatorname{cov}(x, y)<0, y$ tends to decrease when $x$ increases.


## Covariance Matrix

- Covariance matrix:

$$
\operatorname{cov}(\mathbf{x})=\Sigma_{\mathbf{x}}=\mathbb{E}\left[(\mathbf{x}-\hat{\mathbf{x}})(\mathbf{x}-\hat{\mathbf{x}})^{T}\right]
$$

- Where $\mathbf{x}$ is a random vector and $\hat{\mathrm{x}}$ is the vector mean.
- The entry at row i, column j in the matrix is $\operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

■ Multivariate normal distribution is parameterized by the mean vector and covariance matrix.

## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

## Multivariate PDF Example

$\mathbf{x}=\left[\begin{array}{l}3 \\ 3\end{array}\right], \Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$


## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{ll}
.2 & 0 \\
0 & 1
\end{array}\right]
$$

## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$



## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{ll}
1 & .9 \\
.9 & 1
\end{array}\right]
$$

## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{ll}
1 & .9 \\
.9 & 1
\end{array}\right]
$$



## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{cc}
.5 & -.3 \\
-.3 & 2
\end{array}\right]
$$

## Multivariate PDF Example

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \Sigma=\left[\begin{array}{cc}
.5 & -.3 \\
-.3 & 2
\end{array}\right]
$$



## Why is this Useful For Localization?

- Memory and computation requirements grow exponentially for grid-based disributions. E.g. if we want 100 cells per dimension, we need $100^{d}$ cells.
- To approximate with a normal distribution we need $d^{2}+d$ to store.


## Can We Do Recursive State Estimation?

- Two Steps:
- Prediction based on system dynamics:

$$
B e l^{-}\left(x_{t}\right)=\int p\left(x_{t} \mid x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Correction based on sensor reading:

$$
\operatorname{Bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \operatorname{Be} l^{-}\left(x_{t}\right)
$$

YES. The Kalman filter. Next time.

