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Probability Density Functions

Represent probability distributions over random variables:

Properties:

f (x) ≥ 0∫ ∞
−∞

f (x)dx = 1

Interpretation:

P(a ≤ x ≤ b) =

∫ b

a

f (x)dx



Expectation, Variance

Expectation (continuous) (also referred to as the ”mean” or
”first moment”)

µ = E[x ] =

∫
xf (x)dx

Expectation (discrete)

E[X ] =
n∑
1

P(xi )xi

Variance (also referred to as the ”second moment”)

σ2 = E[(x − E[x ])2]



Quiz 1

What is the expectation of this pdf?



Quiz 2

E[X ] =
n∑
1

P(xi )xi

σ2 = E[(x − E[x ])2]

Imagine we are rolling a four-sided die. The following probability
distribution describes the probability for each number that we
could roll:
P(X = 1) = .7
P(X = 2) = .1
P(X = 3) = .1
P(X = 4) = .1
What is the expected value of this distribution? What is the
variance?



Sample Mean and Variance

Expectation and variance are properties of distributions. We can
also calculate the sample mean and the sample variance for a
given data set:
{x1, x2, ..., xn}.

Sample mean

m =
1

n

n∑
i=1

xi

Sample variance

s2 =
1

n

n∑
i=1

(xi −m)2



Normal Distribution

f (x , µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

(Normal because of the central limit theorem.)
All distributions



Vector-Valued State

We’ll need to generalize all of this to the case where the state
of the system can’t be represented as a single number.

Use a vector x to represent the state.



Covariance

cov(x , y) = E[(x − µx)(y − µy )]

Properties:

cov(x , y) = cov(y , x)
If x and y are independent, cov(x , y) = 0
If cov(x , y) > 0, y tends to increase when x increases.
If cov(x , y) < 0, y tends to decrease when x increases.



Covariance Matrix

Covariance matrix:

cov(x) = Σx = E[(x− x̂)(x− x̂)T ]

Where x is a random vector and x̂ is the vector mean.

The entry at row i, column j in the matrix is cov(xi ,xj)

Multivariate normal distribution is parameterized by the mean
vector and covariance matrix.



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.2 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.2 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 .9
.9 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 .9
.9 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.5 −.3
−.3 2

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.5 −.3
−.3 2

]



Why is this Useful For Localization?

Memory and computation requirements grow exponentially for
grid-based disributions. E.g. if we want 100 cells per
dimension, we need 100d cells.

To approximate with a normal distribution we need d2 + d to
store.



Can We Do Recursive State Estimation?

Two Steps:

Prediction based on system dynamics:

Bel−(xt) =

∫
p(xt | xt−1)Bel(xt−1)dxt−1

Correction based on sensor reading:

Bel(xt) = ηp(zt | xt)Bel−(xt)

YES. The Kalman filter. Next time.


