CS354

Turtle Navigation

Two coordinate frames: turtle (t) and world (w)

Turtle Navigation

Turtle wants to move to the goal at position
$(4,2,0)$ w

Turtle Navigation

Turtle's position is $(3,2,0)_{w}$ his orientation is

$$
\Theta=\frac{\pi}{2}
$$

Turtle Navigation

Life would be easier if the goal position was in in the turtle coordinate frame:

- Positive y \rightarrow move right
- Positive $x \rightarrow$ move forward
- Etc.

Quiz: What are the coordinates of the goal in the turtle coordinate frame?

Turtle Navigation

Transforming from one coordinate frame to another can be accomplished through a matrix multiplication:
Goal point in
Homogeneous coordinates.

$$
\mathbf{g}_{w}=\left[\begin{array}{llll}
4 & 2 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Goal point in Turtle coordinate frame

Appropriate 4×4 transformation matrix

Finding Transformation Matrix: Moving Axes Approach

- Determine a sequence of rotations and translations that would "move" the target axis to the origin axis.
- Each translation or rotation is performed relative to the previous steps.
- Each operation has a corresponding matrix:

$$
\operatorname{Trans}(a, b, c)=\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{Roty}(\Theta)=\left[\begin{array}{cccc}
\cos \Theta & 0 & \sin \Theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \Theta & 0 & \cos \Theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{Rotx}(\Theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \Theta & -\sin \Theta & 0 \\
0 & \sin \Theta & \cos \Theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{Rotz}(\Theta)=\left[\begin{array}{cccc}
\cos \Theta & -\sin \Theta & 0 & 0 \\
\sin \Theta & \cos \Theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Moving Axes

Step 1: Rotate around the z axis by
 $-\frac{\pi}{2}$ radians.

Moving Axes

Step 1: Rotate around the z axis by $-\frac{\pi}{2}$ radians.

Step 2: Translate -3 meters along the (new) x-axis, and -2 meters along the (new) y axis

Moving Axes

Step 1: Rotate around the z axis by $-\frac{\pi}{2}$ radians.

Step 2: Translate -3 meters along the (new) x-axis, and -2 meters along the (new) y axis

Moving Axes

- Now we can calculate \mathbf{T}_{w}^{t}

$$
\begin{aligned}
\mathbf{T}_{w}^{t} & =\operatorname{Rotz}\left(-\frac{\pi}{2}\right) \times \operatorname{Trans}(-3,-2,0) \\
\mathbf{T}_{w}^{t} & =\left[\begin{array}{cccc}
\cos \left(-\frac{\pi}{2}\right) & -\sin \left(-\frac{\pi}{2}\right) & 0 & 0 \\
\sin \left(-\frac{\pi}{2}\right) & \cos \left(-\frac{\pi}{2}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{T}_{w}^{t} & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & -2 \\
-1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Moving Axes

- This is what we originally wanted to calculate:

$$
\begin{aligned}
& \mathbf{g}_{t}=\mathbf{T}_{w}^{t} \mathbf{g}_{w} \\
& \mathbf{g}_{t}=\left[\begin{array}{cccc}
0 & 1 & 0 & -2 \\
-1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
4 \\
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

