Configuration Spaces

Nathan Sprague

Configuration Spaces

- A configuration $\mathbf{q} \in \mathcal{C}$ is a vector that contains all of the information necessary to specify the location of a robot and all of its constituent parts.
- Turtlebot configuration: $\mathbf{q}=[x, y, \theta]$.
- $\mathcal{A}(\mathbf{q}) \subset \mathcal{W}$ is the space occupied by the robot in configuration q.
- $\mathcal{C}_{\text {obs }}=\{\mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{O} \neq \emptyset\}$
- $\mathcal{C}_{\text {free }}=\mathcal{C}-\mathcal{C}_{\text {obs }}$

Example C-Space

Triangular non-rotating robot:

Looking Ahead... Planning

- Path planning - Finding a continous path from $\mathbf{q}_{/}$to the goal configuration \mathbf{q}_{G}.

Triangle robot:

Two link arm:

Exercise

Draw $\mathcal{C}_{\text {free }}$ for this robot:

- Robot arm with a single rotational joint and a single prismatic joint
- 1 - prismatic joint extension in meters
- θ - angle of rotational joint ($\Theta \approx \pi / 4$ in the image)

Holonomic vs. Non-Holonomic Constraints

- Holonomic - Constraints on configurations
- Non-Holonomic - Constraints on trajectories (which may make some configurations unreachable)

