
CS 354
Autonomous Robotics

Planning

Instructors: Dr. Kevin Molloy and
Dr. Nathan Sprague

Logistics
Class Calendar has been updated!

First exam
● Next Tuesday Oct 6 @ 4:00 pm
● Due Thursday Oct 8 @ 2:30 pm

Meet the JMU TurtleBots
Opportunity to come to the robotics lab on October 8th during class.
We will be running your ROS programs (like wanderer) on the robots.
Attendance in person is optional but attendance is mandatory.

Robotics Research Review and Presentation
Dr. Sprague will explain.

Review from Last Time

Optimal Path Planning with A*
● Construct a grid to discretize C (the configuration space)

Issues with A*
● Construct a grid to discretize C (the

configuration space)
● Grid size is exponential to cover C. Bad

news for A*

Probabilistic Planner

Rapidly-Exploring Random Trees (LaValle 1998)

Idea: Grow a search tree in the configuration space that expands
the frontier in random directions.

RRT Exploring Voronoi Diagram

RRT Algorithm
RRT (qstart, qgoal, goalTolerance, maxTreeSize)

tree = new Tree()

while treeSize < maxTreeSize

qrand = SampleRandomConfig()
qnear = Tree.findClosest(qnear)

qnew = Expand(qnear, qrand , stepsize)

if qnew /* path is collision free */

tree.addNode(qnew)

tree.addEdge(qnear, qnew)
if goalCheck(qnew, qgoal, goalTolerance)

return Tree

return null

qrand

qgoal

qstart

qnear

RRT Algorithm
RRT (qstart, qgoal, goalTolerance, maxTreeSize)

tree = new Tree()

while treeSize < maxTreeSize

qrand = SampleRandomConfig()
qnear = Tree.findClosest(qnear)

qnew = Expand(qnear, qrand , stepsize)

if qnew /* path is collision free */

tree.addNode(qnew)

tree.addEdge(qnear, qnew)
if goalCheck(qnew, qgoal, goalTolerance)

return Tree

return null

qrand

qgoal

qstart

qnear

RRT Algorithm In Action

HW 2 – Implement Basic RRT

Download the last section of HW2 and complete the code to
implement an RRT algorithm that explores a 2d configuration
space.

RRT Algorithm Analysis

Is RRT Optimal?

No. Why not?

● The tree is expanded in random directions.
● Nodes are connected to the nearest node (qnear) with

no concern of any cost.

Complete Planning?
If a solution does not exist, can A* theoretically tell you that?

Yes, since there is a finite number of grid cells, that
algorithm can explore all of them in some amount of
time. If all nodes explored, then it can report no
solution.

Can RRT inform you that no solution exists?

No. Why not?
The search space is not discretized. Thus, it can continue
sampling and expanding the tree forever.

qgoal
qstart

Optimality
If a solution does not exist, can A* theoretically tell you that?

Steps To Improve the Quality of RRT Solutions
Goal State qrand

Every now and then (maybe
5%), make qrand the goal state.
If you extend a node in the tree
towards the goal, probably a
good thing.

Keep Extending

● Keep expanding and creating
new nodes at the step size
interval in the direction of
qrand. until you reach qrand or
you encounter an obstacle.

RRT (qstart, qgoal, goalTolerance, maxTreeSize)

tree = new Tree()

while treeSize < maxTreeSize

qrand = SampleRandomConfig()
qnear = Tree.findClosest(qnear)

qnew = Expand(qnear, qrand , stepsize)

if qnew /* path is collision free */

tree.addNode(qnew)

tree.addEdge(qnear, qnew)
if goalCheck(qnew, qgoal, goalTolerance)

return Tree

return null

Idea: Improve the path costs during each iteration
1. It records the distance each vertex has traveled from qstart
2. qnew is proposed to be wired into the tree as before. Before wiring qnew to qnear, an additional

check is made. A neighborhood of points are examined to see if connecting qnew to any of them
will result in a lower cost (that is, a shortest distance traveled from the root node).

RRT* -- A Path to Optimality

qrand
qnew

qnear

qstart

Idea: Improve the path costs during each iteration
1. It records the distance each vertex has traveled from qstart
2. qnew is proposed to be wired into the tree as before. Before wiring qnew to qnear, an additional

check is made. A neighborhood of points are examined to see if connecting qnew to any of them
will result in a lower cost (that is, a shortest distance traveled from the root node).

RRT* -- A Path to Optimality

qnew

qnear

qstart

qnew
q1

q2
qnear

q3

5

9
11

Idea: Improve the path costs during each iteration
1. It records the distance each vertex has traveled from qstart
2. qnew is proposed to be wired into the tree as before. Before wiring qnew to qnear, an additional

check is made. A neighborhood of points are examined to see if connecting qnew to any of them
will result in a lower cost (that is, a shortest distance traveled from the root node).

RRT* -- A Path to Optimality

qnew

qnear

qstart

qnew
q1

q2
qnear

q3

5

9
11

14

Idea: Improve the path costs during each iteration
1. It records the distance each vertex has traveled from qstart
2. qnew is proposed to be wired into the tree as before. Before wiring qnew to qnear, an additional

check is made. A neighborhood of points are examined to see if connecting qnew to any of them
will result in a lower cost (that is, a shortest distance traveled from the root node).

RRT* -- A Path to Optimality

qnew

qnear

qstart

qnew
q1

q2
qnear

q3

5

9
11

14
qnew

q1

q2
qnear

q3

5

9
11

8

14 14

Idea: Improve the path costs during each iteration
1. It records the distance each vertex has traveled from qstart
2. qnew is proposed to be wired into the tree as before. Before wiring qnew to qnear, an additional

check is made. A neighborhood of points are examined to see if connecting qnew to any of them
will result in a lower cost (that is, a shortest distance traveled from the root node).

3. Check all nodes in the neighborhood. If their distance can be lowered by connecting through
qnew instead of their existing parent, "rewire" the tree.

RRT* -- A Path to Optimality

qnew

qnear

qstart

qnew
q1

q2
qnear

q3

5

9
11

14
qnew

q1

q2
qnear

q3

5

9
11

8

14 14

qnew
q1

q2
qnear

q3

5

9
10

8

11

RRT* Optimality
Does RRT converge to the optimal solution?

No, running RRT for a longer duration has
no guarantees about convergence.

Does RRT* converge to the optimal solution?

Running RRT* will converge to the optimal
solution.

RRT Algorithm In Action

Varients of RRT (some examples)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Idea: Build a graph/roadmap through the configuration space
While (g.get_node_count() < n)

qrand = problem.random_state()
if collision_free(qrand)

g.add_node(qrand)
for node in neighbors (qrand):
if problem.no_collision(qrand,node)

g.add_edge(problem.no_collision(qrand,node)

Probabilistic Roadmap (PRM)

Computationally Demanding Tasks?

Notes on Probabilistic Approaches

Neighborhood and qnear identification (as graph grows). For robots with many
DOFs, this is O(n) per search.

When to stop?

Program would run infinitely when no solution exists.

