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Objectives

Localization

Methods we know so far:
● Grid-based localization and tracking
● Kalman Filters 

Process of determining where a mobile 
robot is located with respect to its 
environment.  

Today we are going to discuss particle filters.
• Represent belief by random samples
• Estimation of non-Gaussian, nonlinear processes
• Monte Carlo filter, Survival of the fittest



Start

Motion Model Reminder



Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm
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• Given: Set S of weighted samples.

• Wanted : Random sample, where the probability of drawing 
xi is given by wi.

• Typically done n times with replacement to generate new 
sample set S’.

Resampling
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• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity
• Easy to implement, low variance

Resampling





























• Video of tracking through the Smithsonian museum.

Video



• Average over all particles

• Cluster the particles together and pick the "best" cluster

• Maybe something else?

So, where is the robot?



• Augment particle_demo.py to finish implementing a particle
filter for the 4 room problem.
• The motion model says that 50% of the time the robot remains

stationary and 50% of the time it moves as requested.
• Sensor accuracy is 80% (gets the correct room with prob 0.8).  

• The methods for the motion model and reweighing the 
particles are complete.  You need to complete:
• normalize_particles – update the weights so they make a distribution 

(sum to 1)
• calc_probability – based on the particles, what is the probability that the 

robot is in room x
• Resample -- select new particles and assign a uniform weight

Next Problem in Localization Homework
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• The approach described so far is able to: 
• track the pose of a mobile robot and to
• globally localize the robot.

• Issues:
• What happens if we resample while the robot is 

stationary?

• How can we deal with localization errors (i.e., the 
kidnapped robot problem)?

Limitations
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• Randomly insert samples (the robot can be teleported at any 
point in time).

• Insert random samples proportional to the average likelihood 
of the particles (the robot has been teleported with higher 
probability when the likelihood of its observations drops). 

Some Solutions
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• Particle filters are an implementation of recursive 
Bayesian filtering

• They represent the posterior by a set of weighted 
samples.

• In the context of localization, the particles are 
propagated according to the motion model.

• They are then weighted according to the 
likelihood of the observations.

• In a re-sampling step, new particles are drawn 
with a probability proportional to the likelihood of 
the observation. 

Summary


