CS 354
Autonomous Robotics I"‘“’

Particle Filters

Instructors: Dr. Kevin Molloy and
Dr. Nathan Sprague



Objectives

Localization Process of determining where a mobile
robot is located with respect to its
environment.

Methods we know so far:
e Grid-based localization and tracking
e Kalman Filters

Today we are going to discuss particle filters.
* Represent belief by random samples
* Estimation of non-Gaussian, nonlinear processes
* Monte Carlo filter, Survival of the fittest



Motion Model Reminder

Start ™~ -

10 meters



Particle Filter Algorithm

Particle Filer (Xi-1, Ut, Zy)
Inputs:
Xi_1 — The previous particles
u. - the control signal
z. — the sensor value

Output: X, - Updated particles

Xbary = []

M = size (Xi_1)

For m = 0 to M-1 do
sample x ™ ~ p(xy | ue, X ™)
we = p(zZe |ox T we Y

Xbart = Xbart U {<XtLHlJ, WthJ>}

For m = 0 to M -1 do
Draw i with probability prop wgld
Xe = X U {x B, 1/Mm)
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Particle Filer (Xi.1, Ut, Z¢)
Inputs:
Xi_1 — The previous particles lgg

u. - the control signal

z. — the sensor value
Output: X, - Updated particles
Xbary = []
M = size (Xi_1)
For m = 0 to M-1 do
sample x ™ ~ p(xy | ue, X ™)
W™ = D (Z¢ | X)) wp ™
Xbar, = Xbar, U {<x ™, w.[m>}
For m = 0 to M -1 do

Draw i with probability prop wgld
Xe = X U {x B, 1/Mm)
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Particle Filer (Xi.1, Ut, Z¢)
Inputs:
Xi_1 — The previous particles ‘Kg

u. - the control signal

z. — the sensor value
Output: X, - Updated particles
Xbary = []

M = size (Xi_1)
For m = 0 to M-1 do

sample x ™ ~ p(xy | uy, X ™

w, ml = p(zt | Xt[m])W _l[m]

Xbar, = Xbary U {<x ™, w,[™>}
For m = 0 to M -1 do

Draw i with probability prop wgld
Xe = X U {x B, 1/Mm)
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Particle Filer (Xi.1, Ut, Z¢)
Inputs:
Xi_1 — The previous particles ‘Kg

u. - the control signal

z. — the sensor value
Output: X, - Updated particles
Xbary = []

M = size (Xi_1)
For m = 0 to M-1 do

sample x ™ ~ p(xy | uy, X ™

we!™ = p(ze | xM)ywe M

Xbar, = Xbar, U {<x ™, w.[m>}
For m = 0 to M -1 do

Draw i with probability prop wgld]
Xe = X U {x B, 1/M)




Particle Filter Algorithm

Particle Filer (Xi.1, Ut, Z¢)
Inputs:
Xi_1 — The previous particles

u. - the control signal

z. — the sensor value
Output: X, - Updated particles
Xbary = []
M = size (Xi_1)
For m = 0 to M-1 do
sample x ™ ~ p(xy | ue, X ™)
Wthﬂ = Pp(Z¢ | PQJm])Wtﬂﬁm]
Xbar,y = Xbary U {<x ™, w.[®>}
For m = 0 to M -1 do
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Draw i with probability prop wgld

Xe = X U {x B, 1/Mm)
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Particle Filter Algorithm

Particle Filer (Xi.1, Ut, Z¢)

Inputs: Prols)
X,.;, — The previous particles :

u. - the control signal p(s)

z. — the sensor value

Output: X, - Updated particles

Xbary = []
M = size (Xt—l) X © )
ps
For m = 0 to M-1 do Ah h M
S
sample Xthﬂ ~ p(xXe | Uy, Xtﬂ}m]) TPV | YUY || ol e
Wthﬂ = p(z¢ | }gjm])wtﬂﬁm]
Xbar, = Xbar, U {<x M g [M>) X
p(s)
| LI T Y 11 L T TN MONT [ WU TR (O VO VO 1} e M S

For m = 0 to M -1 do
Draw i with probability prop w.l
Xe = X U {x B, 1/Mm)




Particle Filter Algorithm

Particle Filer (Xi.1, Ut, Z¢) =

Inputs: Lzi;=====4L=4L===========4L=========+
X,.;, — The previous particles :
U, - the control signal p)
z. - the sensor value :

Output: X, - Updated particles

Xbary = []

M = size (Xi_1) o o Y

For m = 0 to M-1 do “ m
sample x. ™ ~ p(x, | uy, xe1M™) suse s s o ve o ‘ |‘ l |' i) ’ e .
Wt[m] = p(zy | Xt[m] ) Wt_l[m]
Xbar, = Xbar, U {<x ™, w.[m>} )

For m = 0 to M -1 do 5

Draw i with probability prop wgld]
Xe = X U {x B, 1/M)
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Resampling

e Given: Set S of weighted samples.
e Wanted : Random sample, where the probability of drawing

X; is given by w..

e Typically done n times with replacement to generate new
sample set S".



Resampling

® Roulette wheel

® Binary search, n log n

® Stochastic universal sampling

e Systematic resampling

® Linear time complexity

® Fasy to implement, low variance










































Video

® Video of tracking through the Smithsonian museum.



So, where is the robot?

® Average over all particles
e (Cluster the particles together and pick the "best" cluster

® Maybe something else?



Next Problem in Localization Homework

e Augment particle_demo.py to finish implementing a particle
filter for the 4 room problem.

® The motion model says that 50% of the time the robot remains
stationary and 50% of the time it moves as requested.

® Sensor accuracy is 80% (gets the correct room with prob 0.8).

® The methods for the motion model and reweighing the
particles are complete. You need to complete:

e normalize_particles — update the weights so they make a distribution
(sum to 1)

e calc_probability — based on the particles, what is the probability that the
robot is in room x

e Resample -- select new particles and assign a uniform weight



Limitations

® The approach described so far is able to:
e track the pose of a mobile robot and to
e globally localize the robot.

® [ssues:

e What happens if we resample while the robot is
stationary?

e How can we deal with localization errors (i.e., the
kidnapped robot problem)?
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Some Solutions

e Randomly insert samples (the robot can be teleported at any
point in time).

® Insert random samples proportional to the average likelihood
of the particles (the robot has been teleported with higher
probability when the likelihood of its observations drops).
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Summary

Particle filters are an implementation of recursive
Bayesian filtering

They represent the posterior by a set of weighted
samples.

In the context of localization, the particles are
propagated according to the motion model.

They are then weighted according to the
likelihood of the observations.

In a re-sampling step, new particles are drawn
with a probability proportional to the likelihood of
the observation.
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