
SA-1

CS 354
Autonomous Robotics

Particle Filters

Instructors: Dr. Kevin Molloy and
Dr. Nathan Sprague

Objectives

Localization

Methods we know so far:
● Grid-based localization and tracking
● Kalman Filters

Process of determining where a mobile
robot is located with respect to its
environment.

Today we are going to discuss particle filters.
• Represent belief by random samples
• Estimation of non-Gaussian, nonlinear processes
• Monte Carlo filter, Survival of the fittest

Start

Motion Model Reminder

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

Particle Filer (Xt-1, ut, zt)

Inputs:

Xt-1 – The previous particles
ut – the control signal

zt - the sensor value

Output: Xt – Updated particles

Xbart = []

M = size(Xt-1)
For m = 0 to M-1 do

sample xt[m] ~ p(xt | ut, xt-1[m])

wt[m] = p(zt | xt[m])wt-1[m]

Xbart = Xbart U {<xt[m], wt[m]>}

For m = 0 to M -1 do

Draw i with probability prop wt[i]

Xt = Xt U {xt[i], 1/M}

Particle Filter Algorithm

• Given: Set S of weighted samples.

• Wanted : Random sample, where the probability of drawing
xi is given by wi.

• Typically done n times with replacement to generate new
sample set S’.

Resampling

w2

w3

w1wn

Wn-1
w2

w3

w1wn

Wn-1

• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity
• Easy to implement, low variance

Resampling

• Video of tracking through the Smithsonian museum.

Video

• Average over all particles

• Cluster the particles together and pick the "best" cluster

• Maybe something else?

So, where is the robot?

• Augment particle_demo.py to finish implementing a particle
filter for the 4 room problem.
• The motion model says that 50% of the time the robot remains

stationary and 50% of the time it moves as requested.
• Sensor accuracy is 80% (gets the correct room with prob 0.8).

• The methods for the motion model and reweighing the
particles are complete. You need to complete:
• normalize_particles – update the weights so they make a distribution

(sum to 1)
• calc_probability – based on the particles, what is the probability that the

robot is in room x
• Resample -- select new particles and assign a uniform weight

Next Problem in Localization Homework

29

• The approach described so far is able to:
• track the pose of a mobile robot and to
• globally localize the robot.

• Issues:
• What happens if we resample while the robot is

stationary?

• How can we deal with localization errors (i.e., the
kidnapped robot problem)?

Limitations

30

• Randomly insert samples (the robot can be teleported at any
point in time).

• Insert random samples proportional to the average likelihood
of the particles (the robot has been teleported with higher
probability when the likelihood of its observations drops).

Some Solutions

31

• Particle filters are an implementation of recursive
Bayesian filtering

• They represent the posterior by a set of weighted
samples.

• In the context of localization, the particles are
propagated according to the motion model.

• They are then weighted according to the
likelihood of the observations.

• In a re-sampling step, new particles are drawn
with a probability proportional to the likelihood of
the observation.

Summary

