CS 354 Autonomous Robotics

Particle Filters

Instructors: Dr. Kevin Molloy and Dr. Nathan Sprague

Objectives

Localization Process of determining where a mobile robot is located with respect to its environment.

Methods we know so far:

- Grid-based localization and tracking
- Kalman Filters

Today we are going to discuss particle filters.

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest

Motion Model Reminder

Particle Filter Algorithm

```
Particle Filer ( }\mp@subsup{X}{t-1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{}
Inputs:
    Xt-1 - The previous particles
    ut _ the control signal
    zt - the sensor value
Output: Xt - Updated particles
Xbart}=[
M = size( (Xt-1}
For m = 0 to M-1 do
sample }\mp@subsup{x}{t}{[m]}~p(\mp@subsup{x}{t}{}|\mp@subsup{u}{t}{\prime},\mp@subsup{x}{t-1}{[m]}
    Wt}\mp@subsup{}{[}{[m]}=p(\mp@subsup{z}{t}{}|\quad\mp@subsup{x}{t}{[m]})\mp@subsup{W}{t-1}{[m]
    X.barrt = Xbarrt U {< XXt
For m = 0 to M -1 do
    Draw i with probability prop wt [i]
    Xt}=\mp@subsup{X}{t}{}U{{\mp@subsup{X}{t}{[i]},1/M
```


Particle Filter Algorithm

```
Particle Filer ( ( }\mp@subsup{\textrm{t}}{\textrm{t}}{
Inputs:
    Xt-1 - The previous particles
    ut _ the control signal
    zt - the sensor value

```

p(s)

```
```

```
p(s)
```

```
Output: \(X_{t}\) - Updated particles
\(\mathrm{Xbar}_{\mathrm{t}}=\) []
\(M=\operatorname{size}\left(X_{t-1}\right)\)
For \(m=0\) to \(M-1\) do
    sample \(x_{t}{ }^{[m]} \sim p\left(x_{t} \mid u_{t}, x_{t-1}{ }^{[m]}\right)\)
    \(W_{t}{ }^{[m]}=P\left(z_{t} \mid \quad X_{t}{ }^{[m]}\right) W_{t-1}^{[m]}\)
    \(X^{X b a r} r_{t}=X b a r_{t} U\left\{\left\langle X_{t}{ }^{[m]}, W_{t}{ }^{[m]}\right\rangle\right\}\)
```

For m = 0 to M -1 do
Draw i with probability prop wt [i]
Xt}=\mp@subsup{X}{t}{}U{\mp@subsup{x}{t}{[i]},1/M

```

\section*{Particle Filter Algorithm}
Particle Filer ( \(X_{t-1}, u_{t}, z_{t}\) )
Inputs:
    \(X_{t-1}\) - The previous particles
    \(u_{t}\) - the control signal
    \(z_{t}\) - the sensor value
Output: \(X_{t}\) - Updated particles
Xbarrt = []
Xbarrt = []
M = size( (Xt-1}
M = size( (Xt-1}
For \(m=0\) to \(M-1\) do
    sample \(x_{t}{ }^{[m]} \sim p\left(x_{t} \mid u_{t}, x_{t-1}{ }^{[m]}\right.\)
    \(W_{t}{ }^{[m]}=p\left(z_{t} \mid \quad x_{t}{ }^{[m]}\right) w_{t-1}^{[m]}\)
    Xbar \(_{t}=\operatorname{Xbar}_{t} U\left\{\left\langle X_{t}{ }^{[m]}, W_{t}{ }^{[m]}\right\rangle\right\}\)
For \(m=0\) to \(M-1\) do
    Draw i with probability prop \(w_{t}{ }^{[i]}\)
    \(X_{t}=X_{t} U\left\{X_{t}{ }^{[i]}, 1 / M\right\}\)

\section*{Particle Filter Algorithm}
```

Particle Filer ((}\mp@subsup{\textrm{t}}{\textrm{t}1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{}
Inputs:
Xt-1 - The previous particles
ut _ the control signal
zt - the sensor value
Output: Xt - Updated particles
Xbarct = []
M = size((Xt-1)
For m = 0 to M-1 do
sample }\mp@subsup{x}{t}{}\mp@subsup{}{}{[m]}~p(\mp@subsup{x}{t}{}|\mp@subsup{u}{t}{},\mp@subsup{x}{t-1}{[m]
wt}\mp@subsup{}{}{[m]}=p(\mp@subsup{z}{t}{}|\quad|\quad\mp@subsup{x}{t}{[m]})\mp@subsup{w}{t-1}{[m]
Xbar

```
```

For m = 0 to M -1 do
Draw i with probability prop wt [i]
Xt}=\mp@subsup{X}{t}{}U{{\mp@subsup{X}{t}{[i]},1/M

```


\section*{Particle Filter Algorithm}
```

Particle Filer ((}\mp@subsup{\textrm{t}}{\textrm{t}1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{}

```
Inputs:
    \(X_{t-1}\) - The previous particles
    \(u_{t}\) - the control signal
    \(z_{t}\) - the sensor value



\(4 \mathrm{p}(\mathrm{s})\) ， \({ }^{\text {s }}\)
\[
\text { For } m=0 \text { to } M-1 \text { do }
\]

Draw i with probability prop \(w_{t}{ }^{[i]}\)
\(X_{t}=X_{t} U\left\{X_{t}{ }^{[i]}, 1 / M\right\}\)

\section*{Particle Filter Algorithm}
```

Particle Filer ((}\mp@subsup{\textrm{t}}{\textrm{t}1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{}

```
Inputs:
    \(X_{t-1}\) - The previous particles
    \(u_{t}\) - the control signal
    \(z_{t}\) - the sensor value

```

Output: Xt - Updated particles

```

品品品品寝品品留空空空



品品品户品品品品品品品品品品品
 p（s）


\section*{For \(m=0\) to \(M-1\) do}

Draw i with probability prop \(w_{t}{ }^{[j}\) \(X_{t}=X_{t} U\left\{x_{t}{ }^{[i]}, 1 / M\right\}\)


\section*{\(4 \mathrm{P}(\mathrm{O} \mid \mathrm{s})\)}

\section*{Particle Filter Algorithm}
```

Particle Filer (}\mp@subsup{X}{t-1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{}

```
Inputs:
    \(X_{t-1}\) - The previous particles
    \(u_{t}\) - the control signal
    \(z_{t}\) - the sensor value


Output: \(X_{t}\) - Updated particles
```

Xbart}= [
M = size((Xt-1}
For m = 0 to M-1 do
sample }\mp@subsup{x}{t}{[m]}~p(\mp@subsup{x}{t}{}|\mp@subsup{u}{t}{},\mp@subsup{X}{t-1}{[m]}
Wt}\mp@subsup{}{}{[m]}=p(\mp@subsup{z}{t}{}|\quad| \mp@subsup{x}{t}{[m]})\mp@subsup{W}{t-1}{[m]
Xbarr

```


品品品品品品品品品品吅品品品品品品
p（s）

For \(m=0\) to \(M-1\) do
Draw i with probability prop \(w_{t}{ }^{[i]}\) \(X_{t}=X_{t} U\left\{x_{t}{ }^{[i]}, 1 / M\right\}\)


\section*{Resampling}
- Given: Set S of weighted samples.
- Wanted : Random sample, where the probability of drawing \(x_{i}\) is given by \(w_{i}\).
- Typically done \(n\) times with replacement to generate new sample set \(S^{\prime}\).

\section*{Resampling}

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance














\section*{Video}
- Video of tracking through the Smithsonian museum.

\section*{So, where is the robot?}
- Average over all particles
- Cluster the particles together and pick the "best" cluster
- Maybe something else?

\section*{Next Problem in Localization Homework}
- Augment particle_demo.py to finish implementing a particle filter for the 4 room problem.
- The motion model says that \(50 \%\) of the time the robot remains stationary and \(50 \%\) of the time it moves as requested.
- Sensor accuracy is \(80 \%\) (gets the correct room with prob 0.8 ).
- The methods for the motion model and reweighing the particles are complete. You need to complete:
- normalize_particles - update the weights so they make a distribution (sum to 1)
- calc_probability - based on the particles, what is the probability that the robot is in room \(x\)
- Resample -- select new particles and assign a uniform weight

\section*{Limitations}
- The approach described so far is able to:
- track the pose of a mobile robot and to
- globally localize the robot.
- Issues:
- What happens if we resample while the robot is stationary?
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

\section*{Some Solutions}
- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

\section*{Summary}
- Particle filters are an implementation of recursive Bayesian filtering

They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.```

