
DRAFT4. Path Planning

Chapter 1 explored the problem of selecting a control signal to drive a one-dimensional system into a
desired goal state. This Chapter will explore the more general problem of controlling multi-dimensional
systems in the presence of obstacles.

Broadly speaking, control algorithms can be broken into two categories: reactive and planning-
based. In a reactive system the control signal is determined solely by comparing the current state of
the system to the goal configuration. The PID controller introduced in Chapter 1 is an example of a
reactive controller.

In contrast, planning-based controllers explicitly search for a sequence of steps that will move the
state of the system into a goal configuration. Planning-based control tends to be more appropriate
in constrained control problems such as navigating in the presence of obstacles. In these scenarios a
reactive controller may drive the system into a dead end, where a planning-based controller is able
to look ahead to avoid actions that won’t lead to the goal. This chapter will focus on planning-based
controllers.

4.1 Configuration Spaces

Robots come in all shapes and sizes, from tiny puck-shaped robots to humanoid robots with dozens of
degrees of freedom. Configuration Spaces provide a common framework for expressing the state of a
robot within its environment. A robot’s configuration q is a vector that contains all of the information
necessary to completely specify the location of a robot and all of its constituent parts. For the locomotive
robot from Chapter 1, q would be a single scalar value indicating the robot’s location on the tracks. For
a humanoid robot, q would include all of the robot’s joint angles as well as the robot’s position and
orientation within its workspace. The full space of possible configurations is referred to as the robot’s
Configuration Space or C-space and is expressed as q ∈ C.

While q may be high-dimensional, the world that the robot inhabits, W , has only three spatial
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Figure 4.1: Example of a triangular robot in a planar environment.

dimensions (or two if we are considering a planar path-planning problem). The mapping from a
configuration q to the region of space occupied by a robot is denoted A(q)⊂W whereW = R3 or
W = R2.

In most workspaces there will be configurations that are impossible because they would place
some part of the robot inside an obstacle. We can denote the region of space occupied by obstacles
as O ⊂W . For the purposes of planning it is useful to map these obstacles into the configuration
space of the robot. The result is called the C-space obstacle region Cobs and can be expressed as
Cobs = {q ∈ C | A(q)∩O 6= /0}. The unobstructed portion of of the configuration space is denoted C f ree

where C f ree = C −Cobs.
Figure 4.1 provides an example of a triangular robot in a two-dimensional workspace containing

two obstacles. This robot may translate within the workspace but may not rotate. This example is
atypical in that bothW and C are two-dimensional. If we allowed the robot to rotate, q would require
an additional dimension to represent the robot’s orientation. The resulting configuration space would
be expressed as C = R2×S1, where S represents the set of real-valued numbers representing an angle
or a point on a circle. If we were to additional appendages to the robot, like a trailer and an articulated
arm, the dimensionality of C would increase still more.

Figure 4.2 illustrates the relationship between the shape of the robot, the locations of the obstacles
and Cobs. In this case, we can imagine determining Cobs by tracking q as we slide the robot around the
boundaries of the two obstacles.

The example in Figure 4.2 is only intended to illustrate the relationship between A(q) and Cobs.
It doesn’t represent a general algorithm for solving the problem. The problem of determining Cobs
for arbitrary robots and obstacle shapes is not straightforward, particularly in higher-dimensional
configuration spaces. In practice, we don’t typically attempt to calculate C f ree before searching for a
plan. It is usually more computationally efficient to check configurations as-needed when they arise
during the planning process.

One shortcut for approximating Cobs is to represent both obstacles andA(q) as spheres, or as sets of
spheres. As long as the spheres are large enough to completely enclose the objects, any non-overlapping
configuration is guaranteed to be in C f ree. This reduces collision detection to the problem of calculating
distances between object centers.

Figure 4.3 provides a second example of a robot and the corresponding configuration space. This is
a planar two-link articulated arm. For this robot C = S2.

Summary of Notation
• W = R3 (orW = R3) - The workspace containing the robot
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Figure 4.2: Determining Cobs. The bottom-right figure illustrates Cobs and C f ree for the environment
shown in Figure 4.1.

• q - The robot’s configuration
• C - The robot’s configuration space
• A(q)⊂W - The region of space occupied by robot A in configuration q
• O ⊂W - The region of space occupied by obstacles
• Cobs - The subset of the configuration space that is unreachable because it involves the robot

intersecting with an obstacle.
• C f ree - The subset of the configuration space that is accessible to the robot

4.1.1 The Path Planning Problem
Once C f ree is determined, the path-planning problem is conceptually simple. All we need to do is
find a continuous path in C f ree from some starting configuration qI to the goal configuration qG. This
standard formulation (sometimes called the piano movers problem) allows us to avoid re-thinking the
path planning problem for each new robot or environment. All of robotic path planning boils down to
finding a path from one point to another within a known subset of some (potentially high-dimensional)
space. Figures 4.4 and 4.5 show examples of valid paths for the triangle robot and the two-link arm
respectively.

4.1.2 Constraints
The discussion above assumes that any robot configuration is allowed, as long as the robot doesn’t
intersect with an obstacle. In practice, there are often additional constraints on the set of possible
configurations. These constraints can be classified as holonomic or non-holonomic.

Holonomic Constraints
Holonomic constraints result from physical restrictions that make it impossible for the robot to enter
some regions of the configuration space. For example, the elbow joint on a robotic arm may only have
a 90 degree range of motion. Holonomic constraints don’t significantly complicate the path planning
problem: we can simply extend our notion of C f ree to exclude restricted regions.
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(a) 2D robot arm with two degrees of freedom. For
this robot q = [Θ1,Θ2]

T .

O1

O2

A(q)A(q)

(b) An example of a possible configuration of the
arm along with a pair of obstacles. Notice that O2
is close enough to the arm to prevent the first link
one from making a full rotation.
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(c) An illustration of Cobs for the robot configura-
tion illustrated in 4.3b. The colors indicate con-
figurations that intersect with the corresponding
objects in 4.3b.

(d) The configuration space from 4.3c represented
as a torus. The black lines are located at θ1 =
180/−180 and θ2 = 180/−180. We could imag-
ine creating 4.3c by cutting along these lines and
unwrapping the surface.

Figure 4.3: Configuration space visualizations for a planar two-link robot arm.
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Figure 4.4: Left: A valid path from an initial configuration qI to a goal configuration qG. Right: The
robot trajectory corresponding to the indicated path.
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Figure 4.5: Left: A valid path from an initial configuration qI to a goal configuration qG. Right: The
robot trajectory corresponding to the indicated path.
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Non-Holonomic Constraints

Non-holonomic constraints don’t directly restrict which regions of the space are accessible. Instead,
they restrict how the robot can move from one configuration to another. A classic example of a
non-holonomic constraint is the inability of a car to slide sideways into a parking spot. There is no
constraint preventing the car from being in the parking spot, but the mechanics of the vehicle prevent it
from following a straight-line path to the desired configuration. Non-holonomic constraints can also
arise from system dynamics: A vehicle moving at 5 miles per hour can easily make a 30 degree turn,
while a vehicle moving at 50 miles per hour would roll over. Non-holonomic constraints of this sort are
referred to as kino-dynamic constraints. Non-holonomic constraints complicate the path planning
problem and require the use of specialized algorithms.

Stop and Think

4.1 Draw C f ree and Cobs for the world pictured below:

W

O2

O2

Assume that this is the same non-rotating triangular robot illustrated in Figures 4.1 and 4.2. �

4.2 The robot in Figure 4.1 has a configuration space that can be expressed as C = R2, the robot
in Figure 4.3 had a configuration space expressed as C = S2. Imagine a more complex robot that
combines attributes of these two examples. This new robot is a triangle robot that is able to translate,
rotate in place, and is equipped with a two-link robotic arm. How many degrees of freedom does
this robot have? How would we express configuration space for this robot? �

4.3 Some configurations of a robotic arm may be impossible because of self-collisions. Is this an
example of a holonomic or a non-holonomic constraint? �

4.4 In the text above we used set-builder notation to express the C-obstacle region as as Cobs =
{q ∈ C | A(q)∩O 6= /0}, where O represents the subset ofW occupied by obstacles. What set of
configurations are represented by {q ∈ C | (A(q)∪O)⊆O}? �

4.2 Planning Algorithms

The general path planning problem outlined above is conceptually simple but computationally difficult.
Path planning has been shown to be PSPACE-Hard, making it extremely unlikely that we will ever have
a polynomial time algorithm that is guaranteed to find a path if one exists. This means that practical
planning algorithms necessarily involve compromises in completeness or involve attacking simplified
versions of the problem. The remainder of this chapter will explore several approaches to planning.
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Figure 4.6: Discretizing the configuration space. The figure on the left shows a uniform grid overlaying
the configuration space. In the center figure, all grid cells that overlap with Cobs have been marked as
inaccessible. The figure on the right shows the state space graph that results if all accessible cells are
connected to their neighbors.

4.3 Grid-Based Search

One way to simplify the planning problem is to perform a uniform discretization of the configuration
space and the space of possible actions. For example, it is common to handle holonomic 2D navigation
problems by overlaying the 2D configuration space with a grid. Actions are restricted to moving
between four-connected or eight-connected grid cells. Figure 4.6 illustrates one possible discretization
of the triangle-robot configuration space described in the previous section. The result is a graph where
the vertices represent states and the edges represent actions.

Notice that the discretization in Figure 4.6 makes it impossible for the robot to find a path that passes
between the two obstacles. This highlights a trade-off between the granularity of the discretization and
the quality of the possible solutions. We can make our discretization arbitrarily close to the continuous
version of the problem by reducing the granularity, but finer discretizations come at the cost of more
grid cells which increases the cost of planning.
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1 def search(problem):

2 """

3 Args:

4 problem: a problem instance that provides three methods:

5

6 problem.start() - returns the start state

7 problem.goal() - returns the goal state

8 problem.successors(s) - returns the states that are

9 adjacent to s

10

11 Returns:

12 True if there exists a sequence of states leading from

13 problem.start() to problem.goal(), or False if no such

14 path exists

15 """

16

17 frontier = Collection() # The collection of states that are

18 # currently eligible for expansion

19

20 closed = set() # The set of states that have already

21 # been expanded

22

23 frontier.add(problem.start()) # Initialize the search by adding

24 # the start state to the frontier

25

26 while not frontier.is_empty():

27 cur_state = frontier.pop() # Select the next eligible state

28 # to expand

29

30 closed.add(cur_state) # Make sure that this state can't

31 # be added to the frontier again

32

33 if cur_state == problem.goal(): # Success!

34 return True

35

36 else:

37 # Add the neighbors of the selected state to the frontier...

38 for next_state in problem.successors(cur_state):

39 if (next_state not in closed and

40 next_state not in frontier):

41 frontier.add(next_state)

42

43 return False # No path was found!

Listing 1: Basic graph search algorithm.

Once a search problem has been formulated as a graph, we can use standard graph-search algorithms
to find a permissible path to the goal. Listing 1 presents the basic graph search algorithm. The algorithm
works outward from the start state, maintaining a collection of states on the frontier of the region we
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(a) One expansion (b) Two expansions (c) Nine expansions

(d) 81 expansions (e) 350 expansions (f) 641 expansion

Figure 4.7: BFS search example. The cell containing the start state is colored green and the goal state
is colored gold. States in the frontier are shown in blue. States in the closed set are shown in gray. The
final path is shown in red.

have already searched. At each iteration, we select a state from the frontier and add its neighbors back
into the frontier. This process continues until the goal state is selected from the frontier.

Selecting and processing a state from the frontier is referred to as expansion. Maintaining a closed
set allows us to avoid considering multiple paths to the same state. Each time a state is expanded it is
added to the closed set. Once a state is closed, the check on line 39 ensures that it will never be added
back into the frontier.

The collection type used to store the frontier determines the order that the states are expanded
during search. When a queue is used, the algorithm in Listing 1 performs a breadth-first-search (BFS),
while the use of a stack results in depth-first-search (DFS).

For search problems with uniform step costs, BFS is both complete and optimal. A complete
search algorithm is guaranteed to find a path if one exists. An optimal search algorithm is guaranteed
to find the lowest-cost path. BFS is optimal in the sense that it is guaranteed to find the path with the
fewest possible steps. By storing the frontier in a FIFO queue we ensure that all paths of length n are
explored before we explore any paths of length n+1.

In contrast, DFS is neither complete nor optimal. In the case of an infinite graph, DFS could
potentially perform infinite expansions away from the goal state, even if the goal could be reached
within only a small number of steps. The advantage of DFS is that it requires less memory to store the
frontier. The number of nodes in the frontier grows linearly for DFS but it may grow exponentially for
BFS, depending on the structure of the search problem.

Figure 4.7 illustrates a BFS search in our triangle-world workspace. Figure 4.8 illustrates a DFS
search.
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(a) One expansion (b) Two expansions (c) Nine expansions

(d) 81 expansions (e) 350 expansions (f) 477 expansion

Figure 4.8: DFS search example.

4.3.1 Returning A Path

The careful reader will notice that the algorithm in Listing 1 doesn’t actually return a path to the goal.
It only determines whether such a path exists. In order to reconstruct the path we need to maintain
an auxiliary data structure that stores backward references from each state to the state that precedes
it. Once the goal is reached, the path can be reconstructed by following the backward references
from the goal back to the start state and then reversing the steps. Listing 2 shows a possible Python
implementation of the necessary data type and an appropriately updated version of the algorithm from
Listing 1.

The containment check on line 40 of Listing 2 requires some clarification. The goal here is to avoid
exploring multiple paths that pass through the same state. If the frontier already contains a node for a
state, we don’t want to add another node that represents a different route to that state. This means that
the test on line 40 is not checking to see if the indicated Node is in the frontier, it is checking to see if
any Node in the frontier contains new_state. Removing this check would not impact the correctness
of the algorithm, but it would significantly impact efficiency for problems that allow many different
paths to each state.

v-1.1 ©2019 Nathan Sprague all rights reserved



DRAFT

4.3 Grid-Based Search 43

1 class Node:

2 """The Node class stores backward references from each state

3 encountered in the search to a Node representing the

4 state that preceded it.

5 """

6 def __init__(self, state, parent_node):

7 self.state = state

8 self.parent = parent_node

9

10

11 def search(problem):

12 """

13 Input: problem - a problem instance that provides three methods:

14

15 problem.start() - returns the start state

16 problem.goal() - returns the goal state

17 problem.successors(s) - returns the states that are

18 adjacent to s

19

20 Returns: A sequence of states leading from problem.start() to

21 problem.goal(), or None if no path exists

22 """

23 frontier = Collection()

24 closed = set()

25

26 frontier.add( Node(problem.start(), None) )

27

28 while not frontier.is_empty():

29 cur_node = frontier.pop()

30 cur_state = cur_node.state

31 closed.add(cur_state)

32

33 if cur_state == problem.goal():

34 return construct_path(cur_node) # path ending at this node

35

36 else:

37 for next_state in problem.successors(cur_state):

38 next_node = Node(next_state, cur_node)

39 if (next_state not in closed and

40 next_node not in frontier): # See text.

41 frontier.add( next_node )

42

43 return None

Listing 2: Graph search algorithm updated to return a path. Steps that differ from Listing 1 are
highlighted in yellow. The key difference is that the frontier stores Node objects rather than states.

Stop and Think
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4.5 Consider the following graph:

a b c

d e f

g h i

Complete the table below to show the state of search algorithm 2 after each iteration of a DFS
search starting at state g with the goal at state a. The tuples in the Frontier column represent Node
objects where the first entry is the state and the second entry is the state associated with the parent
node. Assume that the loop on line 37 accesses neighbors in alphabetical order. The first three steps
are completed for you.

Expansions Chosen Frontier Closed Set
0 – 〈g,–〉 –
1 g 〈d,g〉, 〈h,g〉 {g}
3 h 〈d,g〉, 〈e,h〉, 〈i,h〉 {g,h}
3
4
5
6
7

What is the final path discovered by DFS? (You should be able to reconstruct it by working
backward through the parent entries starting from the point where a is selected from the frontier.) �

4.6 Repeat the previous exercise using a BFS search. �

4.7 The algorithm in Listing 1 is described as a graph search algorithm, but the graph is implicit:
graph edges are essentially generated as needed through calls to problem.successors. Why might
this approach make more sense than explicitly creating an entire graph structure before executing a
search? �

4.8 What if we knew that the state space being searched is actually a tree rooted at the start
state? How would this allow us to simplify the search algorithm in Listing 1? Can you think of a
path-planning problem that would have a tree-structured search space? �
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4.3.2 Dijkstra’s Algorithm

1 class Node:

2 def __init__(self, state, parent_node, step_cost ):

3 self.state = state

4 self.parent = parent_node

5 self.path_cost = parent_node.path_cost + step_cost

6

7 def dijkstra(problem):

8 frontier = PriorityQueue()

9 closed = set()

10

11 start_node = Node(problem.start(), None, 0.0 )

12 frontier.add(start_node, 0.0 )

13

14 while not frontier.is_empty():

15 cur_node = frontier.pop()

16 cur_state = cur_node.state

17 closed.add(cur_state)

18

19 if cur_state == problem.goal():

20 return construct_path(cur_node)

21 else:

22 for next_state in problem.successors(cur_state):

23 cost = problem.cost(cur_state, next_state)

24 next_node = Node(next_state, cur_node, cost )

25 if next_state not in closed:

26 frontier.add(next_node, next_node.path_cost )

27 return None

Listing 3: Dijkstra’s algorithm. Steps that differ from Listing 2 are highlighted. The key difference is
that the frontier is represented by a Priority Queue that is ordered by the total cost to reach the state.

In many path-planning problems there is a notion of path cost that is distinct from the number of
edges in the path. In the case of 2D navigation, the cost of a path might be the total distance traveled,
the time required to reach the goal, or the amount of energy expended by the robot.

For example, if we want to find shortest paths in the grid navigation problem from Figure 4.6 we
should assign weights to the edges in proportion to the distance that the robot must travel to move from
cell to cell. This means that diagonal steps must have a higher weight to reflect the fact that the robot
moves farther. An optimal solution to this weighted version of the problem will represent the shortest
path in terms of distance traveled. Notice that the path discovered by BFS in Figure 4.7 is optimal in
terms of the number of steps taken, but it is clearly not optimal in terms of distance.

With some slight modification, the algorithm in Listing 2 can be updated to take path costs into
account. Listing 3 shows the updated algorithm. The main differences are that the Node implementation
has been updated to store the total path cost required to reach the corresponding state, and the frontier
is now represented by a Priority Queue ordered by path cost. The Priority Queue ensures that Nodes
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(a) One expansion (b) Two expansions (c) 13 expansions

(d) 100 expansions (e) 350 expansions (f) 674 expansion

Figure 4.9: Dijkstra’s algorithm search example

are expanded in strictly increasing order of path cost. Given that all edges must have positive weights,
each time an expansion occurs, all of the nodes added back to the frontier are guaranteed to have a
higher cost than the node that was expanded. This means that when a node representing the goal state
is expanded it must represent the lowest-cost path to the goal.

Notice that the algorithm in Listing 3 does not check if a state is already on the frontier before
adding the new node for that state. From the point of view of correctness, this is fine: There is no
danger of finding a longer path to the goal before a shorter path is discovered since the lower-cost node
will be expanded first. However, it is more efficient to implement the frontier so that any higher-cost
node is replaced when a lower-cost node is added for the same state. This prevents the wasted effort of
expanding a higher-cost node (representing a longer path to the same state) after a lower-cost node.

Figure 4.9 shows an example of applying Dijkstra’s algorithm to the triangle navigation problem.
The resulting path is optimal for the given discretization.

Stop and Think

4.9 Consider the following weighted graph:

a b c

d e f

g h i

3

2

1

6

1 1

2 1

1

4

1 1

Complete the table below to show the state of Dijkstra’s algorithm after each expansion. Again
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the start state is g and the goal state is a. Break priority ties using alphabetical order. I.e. in the case
of a tie, state a will selected before state b. The tuples in the Frontier column represent Node objects
where the first entry is the state, the second entry is the state associated with the parent node and the
third entry is the path cost to reach the state. The first three steps are completed for you.

Expansions Chosen Frontier Closed Set
0 – 〈g,–,0〉 –
1 g 〈d,g,6〉, 〈h,g,1〉 {g}
3 h 〈d,g,6〉, 〈e,h,3〉, 〈i,h,2〉 {g,h}
3
4
5
6
7
8

What final path is returned? What is the path cost? �

4.10 Compare 4.7 to 4.9. Why is the frontier more or less square in one and round in the other? �

4.11 Take a look at the true, non-discretized, configuration space from Figure 4.1. What would the
shortest path look like in that space? Why is it different from the path shown in figure 4.9? �

4.12 Is it guaranteed that there will always be a unique minimum-cost path? If not, how could the
algorithm in Listing 3 be updated to return all such paths? �

4.13 Is it always the case that the shortest Euclidean distance between two configurations represents
the most efficient path for the robot to take between those configurations? If not, describe a counter-
example. �

4.3.3 A*

All of the graph search algorithms discussed so far can be described as undirected. This means that
they “blindly” work their way out from the start state until the goal state is encountered. Intuitively, it
seems that we should be able to search more quickly by preferring to expand nodes that are likely to be
closer to the goal: If we know that the goal is to the east of the robot, then surely we should start the
search by exploring actions that move the robot in that direction.

This intuition can be formalized through the idea of a heuristic function h(s). A heuristic function
maps from a state to the estimated cost of reaching the goal from that state. States with lower heuristic
values are believed to be closer to the goal, and thus should be explored before states with higher
heuristic values.

We can easily update Dijkstra’s algorithm to take advantage this idea. The only change required is
that the the Priority Queue representing the frontier will now be ordered by f (s) = c(s)+h(s) where
c(s) represents the cost of reaching state s, and h(s) represents the estimated cost of reaching the goal
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from s. The sum represents an estimate of the overall cost of the shortest path that passes through state
s. The resulting Algorithm is called A*.

The A* algorithm is guaranteed to find an optimal path as long as the heuristic function satisfies
two requirements: First, it must never overestimate the true cost of reaching the goal. An overestimate
could prevent a node from being expanded, even if that node is on the shortest path to the goal. Second,
the heuristic function must be consistent. Formally, this means that h(s) ≤ h(s′)+ cost(s,s′) for all
states s and s′ where cost(s,s′) represents the cost of the edge between s and s′. Informally, this means
that the heuristic function should respect the actual step costs. When stepping from s to s′, the heuristic
function shouldn’t drop by more than the cost of the step.

The “*” in A* was chosen to indicate that this is, in a sense, the last word in heuristic-based graph
search algorithms. Not only is A* guaranteed to find a shortest path, it is also provably optimal in terms
of the number of nodes expanded. Any algorithm that is guaranteed to find a shortest path must expand
at least as many nodes as A* when using the same heuristic function.

Taking full advantage of A* requires the selection of a good heuristic function. A good heuristic
function should be as close as possible to the true cost of reaching the goal, while being fast to
compute and satisfying the consistency requirement. In general, it can be challenging to satisfy these
requirements. However, in robotic path planning problems where the objective is to find a minimum
length path, the straight-line distance to the goal is often a reasonable choice. The straight-line distance
is easy to compute. It may underestimate the true cost, (because it doesn’t take obstacles into account)
but it can never overestimate: the straight-line distance always represents the shortest possible path to
the goal. If the step cost is taken to be the distance traveled, then the straight line distance is consistent
because no step can reduce the distance to the goal by more than the distance moved.

Figure 4.10 illustrates an A* search using the straight line heuristic. Notice that, while A* does not
return the same path that was discovered by Dijkstra’s algorithm, the two paths have the same length
and both are optimal.

Stop and Think

4.14 The Manhattan distance is a count of the minimum number of edges between two states in
a two-dimensional grid. Is Manhattan distance an admissible heuristic for the search problem in
Question 4.9? �

4.15 Repeat Question 4.9 using an A* search. Use the Manhattan distance to the goal as the
heuristic function. For this problem, the fourth value in the Frontier tuples will represent f (s) =
c(s)+h(s). The first three expansions are done for you.

Expansions Chosen Frontier Closed Set
0 – 〈g,–,0,2〉 –
1 g 〈d,g,6,7〉, 〈h,g,1,4〉 {g}
3 h 〈d,g,6,7〉, 〈e,h,3,5〉, 〈i,h,2,6〉 {g,h}
3
4
5

�
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(a) One expansion (b) Two expansions (c) 13 expansions

(d) 100 expansions (e) 350 expansions (f) 373 expansion

Figure 4.10: A∗ search example.

4.16 In comparing Figure 4.10 to Figure 4.9 we can see that A* does appear to be “smarter”. It
tends to expand nodes that are closer to the goal before nodes that are farther away. On the other
hand A* does expand some nodes that are in the “wrong” direction. For example, by expansion
100 it has expanded several nodes below and to the left of the start state, even those they are in the
opposite direction from the goal. What’s going on? Why doesn’t A* always expand the node that is
closest to the goal? �

4.17 Imagine we want to encourage A* to avoid taking steps that move the robot close to an
obstacle. We could attempt to accomplish this by adding 5 to the heuristic function for every state
that is adjacent to an obstacle. Is it possible for the resulting heuristic to overestimate the cost to
goal? Is the resulting heuristic consistent? Can you think of a better approach achieving the desired
outcome? �

4.18 Consider the heuristic function h(s) = 0 for all states s. Does this heuristic ever over-estimate
the true cost? Is it consistent? Is it a useful heuristic? Why or why not? �

4.3.4 The Efficiency of Grid-Based Search
The worst-case time complexity of both Dijkstra’s algorithm and A* is usually described as O(db)
where d is the number of steps to the goal and b is the branching factor – the average number of
successors for each state. This is a valid upper-bound, but it can give a dramatic over-estimate for
problems where the pruning allowed by closed the set allows us to avoid considering many alternative
paths that pass through the same state. When using a closed set, the total number of expansions is, at
most, equal to the number of states N, since each state can be expanded at most once. Therefore, for
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Dimensions (d) Branching Factor (b) Number of States (N)

1 31−1 = 2 1001 = 100

2 32−1 = 8 1002 = 10,000

3 33−1 = 26 1003 = 1,000,000

4 34−1 = 80 1004 = 100,000,000

5 35−1 = 242 1005 = 10,000,000,000

6 36−1 = 728 1006 = 1,000,000,000,000

Table 4.1: Branching factor and state space size as a function of dimensionality

problems with a finite number of state, a tighter bound is O(Nb log(N))):

N

Maximum expansions

b

Neighbors per expansion

log(N)

Priority Queue and
Set operations

This means that both Dijkstra’s algorithm and A* are actually polynomial-time algorithms as a
function of the number of states. The bad news is that, for grid-based discretizations of a configuration
space, the number of states and the branching factor both grow exponentially with the number of
dimensions in the problem.

Table 4.1 illustrates a grid-based discretization where each dimension is divided into 100 equal
increments and each grid cell is connected to its immediate neighbors. The take-home message from
this table is that grid-based search works well for two-dimensional search problems, but quickly
becomes impractical as the number of dimensions increases. This is a significant issue, given that
practical search problems can easily have six dimensions or more. The remainder of this chapter will
consider alternatives to grid-based search that are suitable for high-dimensional path planning.

4.4 Sampling-Based Search
Sampling-based search algorithms abandon the completeness and optimally guarantees of grid-based
search in exchange for better performance in high-dimensional configuration spaces. Instead of creating
a dense discretization, sampling based algorithm create a sparse web of nodes by placing edges between
randomly generated configurations.

4.4.1 Rapidly Exploring Random Trees
The Rapidly Exploring Random Tree (RRT) algorithm is an undirected search algorithm that incremen-
tally builds a tree outward from the starting configuration until the goal configuration is reached. Figure
4.15 illustrates one iteration of RRT. First, a configuration qrand is sampled from the full configuration
space. Next, we select the node in the tree qnear that is nearest to the randomly generated point for
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qI

qrand

qI

qrand

qnear

qnew

qI

Figure 4.11: One iteration of the rapidly exploring random tree algorithm. Left: a random configuration
qrand is selected. Center: the nearest node in the existing tree qnear is selected for expansion. A new
node qnew is created by running a local planner to find an action that moves in the direction of the
random node. Right: The new node is added to the tree.

expansion. Finally, we add a node qnew to the tree by taking a step from qnear in the direction of qrand.
The full algorithm is outlined in Listing 4.

The basic algorithm presented in Listing 4 only handles the construction of the tree. The algorithm
can be augmented to return a path by adding a check to see if newly created nodes are close enough to
the goal configuration to allow a connection.

v-1.1 ©2019 Nathan Sprague all rights reserved



DRAFT

52 Chapter 4. Path Planning

1 def rrt(problem, q_init, tree_size):

2 """ Build a rapidly exploring random tree.

3

4 Args:

5 problem: a problem instance that provides three methods:

6

7 problem.random_state() -

8 Return a randomly generated configuration

9 problem.select_input(q_rand, q_near) -

10 Return an action that would move the robot from

11 q_near in the direction of q_rand

12 problem.new_state(q_near, u) -

13 Return the state that would result from taking

14 action u in state q_near

15

16 q_init: the initial state

17 tree_size: the number of nodes to add to the tree

18

19 Returns:

20 A tree of configurations rooted at q_init

21

22 """

23 tree = Tree(q_init) # Make the start state the root of the tree

24 while tree.num_nodes() < tree_size:

25 q_rand = problem.random_state()

26 q_near = nearest_neighbor(tree, q_rand)

27 u = problem.select_input(q_rand, q_near)

28 q_new = problem.new_state(q_near, u)

29 tree.add_node(q_new):

30 tree.add_edge(q_near, q_new)

31 return tree

Listing 4: The Rapidly Exploring Random Tree (RRT) algorithm.

The strength of the RRT algorithm lies in its tendency to quickly move away from the initial
configuration into unexplored areas of the configuration space. The Voronoi diagram in Figure 4.12
provides an intuition for this behavior. A Voronoi diagram partitions space into regions based on the
nearest neighbor boundaries. As can be seen in Figure 4.12, nodes at the edge of the tree have much
larger Voronoi regions than nodes on the interior. This means that a randomly generated configuration
is more likely to land within the Voronoi region of one of these edge nodes. This Voronoi bias tends to
pull the tree into unexplored areas of the configuration space.

Figure 4.13 illustrates the progress of the RRT algorithm on the triangle robot example. Notice
that the final path is clearly not optimal. In fact the RRT algorithm is neither optimal nor complete. It
is, however, probabilistically complete: if a path to the goal exists, the probability of finding a path
approaches one as the number of iterations approaches infinity.

In practice, RRT planners typically perform some post-processing to smooth out paths once they
have been discovered. This can be done, for example, by selecting non-neighboring points on the path
and attempting to find direct connections between them.
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Figure 4.12: Voronoi diagram for a partially constructed random tree. The nodes at the edge of the tree
have larger Voronoi regions, and so are more likely to be expanded.

Figure 4.13: Example of applying the RRT algorithm to the triangle robot navigation problem from
Figure 4.4. The final path is shown in red in the right-most figure.

RRT’s for Non-Holonomic Path Planning

The Rapidly Exploring Random Tree algorithm is well suited to non-holonomic path-planning problems.
For the holonomic example in Figure 4.13, select_input simply creates a short line segment from
qnear in the direction of qrand. In the case of non-holonomic planning, new_state and select_input

must be implemented to respect the non-holonomic constraints.
Figure 4.14 shows an example of RRT path planning for a non-holonomic wheeled vehicle that

may only move forward and has a maximum turning radius. In the initial configuration, the robot is
located inside a narrow passage and is pointed away from the goal location. The RRT algorithm works
outward from the initial configuration to the goal in steps that respect the non-holonomic constraints.

Stop and Think

4.19 Take a moment to examine the RRT algorithm in Listing 4. Which steps in the algorithm do
you expect to be most computationally expensive? Why? �

4.20 The basic RRT algorithm in Listing 4 is completely undirected. A common optimization is to
bias search in the direction of the goal by selecting the goal configuration as qrand with some small
probability. Why not select the goal configuration 100% of the time? �
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Figure 4.14: Example of applying the RRT algorithm to a non-holonomic path-planning problem.

4.4.2 Probabilistic Roadmaps

One weakness of the RRT algorithm is that it must explore the configuration space from scratch for
each search. In domains that involve repeated searches within the same environment, it may be more
efficient to pre-compute a graph that maps the connectivity of C f ree. The Probabilistic Road Map (PRM)
algorithm takes this approach. The algorithm proceeds by generating random configurations from C f ree

and attempting to connect those configurations to all existing configurations within some fixed radius.
Listing 4 provides the complete algorithm and Figure 4.15 illustrates one iteration.
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def prm(problem, delta, roadmap_size):

""" Create a Probabilistic Roadmap.

Args:

problem: a problem instance that provides two methods:

problem.random_state() -

Return a random state from C_free

problem.no_collision(q1, q2) -

Return True if there is a collision free path

from q1 to q2

delta: Distance threshold for connecting neighboring states

roadmap_size: Number of nodes in the completed Roadmap

Returns:

A graph representing a Probabilistic Roadmap

"""

graph = Graph()

while graph.num_nodes() < roadmap_size:

q_rand = problem.random_state()

graph.add_node(q_rand)

for q in neighbors(graph, q_rand, delta):

if problem.no_collision(q, q_rand):

graph.add_edge(q, q_rand)

return graph

Listing 5: The Probabilistic Road Map Algorithm (PRM).

Once a roadmap has been created it can be used for path-planning by adding the start and goal
configurations to the graph and using any of the graph search algorithms from Section 4.3.

The PRM algorithm is not well suited to non-holonomic path planning problems. The PRM graph
must be undirected to facilitate planning from an initially unknown start configuration to an unknown
goal configuration. As with the wheeled vehicle example from Figure 4.14, non-holonomic domains
often do not allow for “reversible” actions of the type that can be represented in an undirected graph.

Stop and Think

4.21 What is the difference between implementing problem.random_state for use with the
PRM algorithm vs. RRT? �

4.22 The original formulation of the PRM algorithm only added edges between nodes that were
not already in the same connected component. How would this impact the probability of finding a
path in the resulting map? How would this impact the quality of the discovered paths? �

4.5 References and Further Reading
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qrand

Figure 4.15: One iteration of the probabilistic Roadmap algorithm. The figure on the left shows the
randomly generated configuration qrand connected by dotted lines to the existing points that are within
range. The dotted red line will not be added to the roadmap because it passes through an obstacle. The
figure on the right shows the roadmap after qrand and the appropriate edges have been added.
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