
Professor: Kevin Molloy
(slides adapted from Alvin Chao)

• Now let’s play a different game. In this section, we’ll create an array
of face cards. (Note: The array is one-dimensional, but the cards are
displayed on four lines for convenience.)

1. Implement the following constructor. The class has two
attributes: rank and suit. Don’t think too hard about it.
/**
* Constructs a face card given its rank and suit.
* @param rank face value (1 = ace, 11 = jack, 12 = queen, 13
= king)
* @param suit category ("clubs", "diamonds", "hearts", or
"spades")
*/
public Card(int rank, String suit) { }

2. In one line of code,declare an array of strings named suits
and initialize its contents to the four possible suits as shown
above.

3. Write several lines of code to declare and create an array of 52
Card objects. Use nested for loops to construct Card objects in
the order of the Model. Make use of your suits array from the
previous question. How you will keep track of the array index?

4. Describe what the following code does and how it works. (Note: You’ve
come along way this semester, to be able to understand this example!)

public static Card[] sort(Card[] deck) {
if (deck == null) {

System.err.println("Missing deck!");
return null;

}
Card[] sorted = new Card[deck.length];
for (Card card : deck) {

int index = card.position();
sorted[index] = card;

}
return sorted;

}
13. Write a static method named inDeck that takes a Card[] representing a
deck of cards and a Card object representing a single card, and that returns

5. Write a static method named inDeck that takes a Card[] representing a
deck of cards and a Card object representing a single card, and that returns
true if the card is somewhere in the deck of cards. Be sure to use the equals
method of the Card object to make comparisons.

• Acknowledgements
Parts of this activity are based on
materials developed by Chris Mayfield
and Nathan Sprague.

</end>

