

CS 149

Professor: Kevin Molloy (adapted from slides originally developed by Alvin Chao)

Methods Review

- Java programs are organized into classes, each of which has one or more methods, each of which has one or more statements.
 Writing methods allows you to break down a complex program into smaller blocks of reusable code.
- 2. Each statement a program **invokes** (or calls) a method. At the end of a method, Java **returns** to where it was invoked.

Model 2 Math Class

```
public static int abs(int a)
public static double log(double a)
public static double pow(double a, double b)
public static double random()
public static int subtractExact(int x, int y)
```

- Consider the following methods defined in the Math class
- value = abs(-5); // Error cannot find symbol
- value = Math.abs(-5); //correct
- The period in this example is called the dot operator. When reading the above code out loud, you would say "math dot abs".

Model 2 Math Methods

In the JavaDoc on the right for the Math Class

- What type of value does Math.random() return?
- When invoking a method, what do you need to specify before and after the method name?
- When defining a method, what do you need to specify before and after the method name?
- Define a method named average that requires two integers x, and y and returns a double. (This is called the method signature)
- How many parameters and arguments does each method have?

Modifier and Type	Method and Description
static int	<pre>abs(int a) Returns the absolute value of an int value.</pre>
static double	log(double a) Returns the natural logarithm (base e) of a double value.
static double	<pre>pow(double a, double b) Returns the value of the first argument raised to the power of the second argument.</pre>
static double	<pre>random() Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.</pre>
static int	<pre>subtractExact(int x, int y) Returns the difference of the arguments, throwing an exception if the result overflows an int.</pre>

Math Methods contd.

Method	# Params	# Args	Modifier and Type	Method and
Wellied	" r arams	7 63	static int	abs(int a) Returns the an int value
abs				
log			static double	log(double Returns the
pow				a double va
random			static double	pow(double Returns the raised to th argument.
subtractExact				
println			static double	random() Returns a d
				sign, greate than 1.0.

Modifier and Type	Method and Description
static int	<pre>abs(int a) Returns the absolute value of an int value.</pre>
static double	log(double a) Returns the natural logarithm (base e) of a double value.
static double	<pre>pow(double a, double b) Returns the value of the first argument raised to the power of the second argument.</pre>
static double	<pre>random() Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.</pre>
static int	<pre>subtractExact(int x, int y) Returns the difference of the arguments, throwing an exception if the result overflows an int.</pre>

Model 3 Stack Diagrams

How many methods does the program call?

How many variables does the program have?

How can two variables of the same name have different values?


```
public static void printTime(int hour, int minute) {
    System.out.println(hour + ":" + minute);
}

public static void main(String[] args) {
    int hour = 11;
    int minute = 59;
    printTime(12, 15);
}
```


Stack Diagrams

1. Draw a stack diagram just before println is called. Assume the user inputs the value 10.

```
public static void show(double c) {
    double f;
    String str;
    f = c * 1.8 + 32;
    str = String.format("%.1f C = %.1f F\n", c, f);
    System.out.println(str);
public static void main(String[] args) {
    double c;
    Scanner in = new Scanner(System.in);
    System.out.print("Enter temperature in Celsius: ");
    c = in.nextDouble();
    show(c);
```

Acknowledgements

Parts of this activity are based on materials developed by Chris Mayfield and Nathan Sprague.

</end>