

CS 149
 Professor: Kevin Molloy

(adapted from slides originally developed by Alvin Chao)

Circle math

-Counting on a Line:

- $x+a$ moves you a units to the right of x
- $x-b$ moves you b units to the left of x
-Counting on a Circle
$\bullet(x+a)$ moves you a units clockwise of x
- $(x-b)$ moves you b units counterclockwise of x

Clock Arithmetic

- Background:
- A 24-hour clock (00-23)
- It is now 17. What time will it be in 12 hours?
- The Naive Approach:
$-17+12$ is 29 . So, we have advanced a day. That means the time is actually 29-24 or 5 .
- A Shortcoming of this Approach:
- We might advance more than one day! (For example, advancing 93 hours from now.)

Clock Arithmetic(contd.)

- A Better Way
- Use arithmetic on a circle(that goes from 0 to 23)
- Using int variables and \% (modulo operator)
- future = (current + change) \% 24;

Other Time/Date examples

- Minutes
- Go from 0 to 59
- Be mindful if you also need to count hours(which can be calculated using integer division).
- Days of the Week (0 to 6)
- Months of the Year (0 to 11 not 1 to 12)
- Weights: Ounces $(0-15)$ then use pounds
- Pounds (0-1999) then use tons
- Distances:
- Inches (0-11) then use feet
- Feet(0-2) then use yards
- Yards (0 - 5279) then use miles

Another time example

"Twenty-nine days" means the same thing as "Four weeks and one day". If days is a Java integer variable containing some number of days, develop expressions for:

- The number of weeks in days (4 in the example above).
- The number of days that are left over. (1 in the example above).

Even/Odd Numbers

- Definition
- A number is even if it can be divided by 2 with no remainder
- Observe
- If we think of all numbers as being either even or odd we can conceptualize this as a circle with two items in the cycle.
- We can use the \% operator to do this.
- Does x \% 2 equal 0 ?

Cycling through a Set

- Examples
- Turn-taking by different \# of players
- Cycling through a set of colors
- Repeating a set of instructions
- Observation
- An element in a set can be identified by its number
- If we start at 0 and let n be the cardinality in the set then we can use index $=($ index +1) $\% n$

Divisibility: Census Example

- Background: The U.S. Census Bureau conducts a census every 10 years(in years ending with a zero)
- Problem: Find the previous census year for a given year
- Using / :
- censusYear = (year / 10) * 10;

Digit Manipulation

- Note an int value is 'atomic' meaning it has no sub-parts.
- Many times we want to find the ones digit or tens digit of a number.
- Get the left-most digits
- Use integer division (i.e. /)
- Use a right-side operand of $10^{\mathrm{N-n}}$
- Get the right-most digits
- Use remainder after division (i.e. \%)
- Use a rightside operand of $10^{\text {n }}$

In practice

- Retrieving the Left-Most n Digits:
- The left-most digit of 7198 is 7198 / 1000
- The left-most two digits of 531768 are 531768 / 10000
- Retrieving the Right-Most n Digits:
- The right-most digit of 7198 is $7198 \% 10$
- The right-most two digits of 531768 are 531768 \% 100

Operations

- An operator is a symbol indicating that an operation is to be performed on one or more operands
- An operand can be a variable, literal, or expression
- Number of Operands:
- A unary operator has one operand
- A binary operator has two operands
- A ternary operator has three operands

Binary Operators

- Numeric Operations and Operators:
- Addition (+)
- Subtraction (-)
- Multiplication (*)
- Division (/)
- Integer Division (/)
- Modulo (\%)
- Operands
- Best practices would say these should be the same type but Java sometimes varies these types

Unary Operators

- Operations and Operators:
- "Positive" (+)
- Negative (-)
- Increment (++)
- Decrement (--)
- Operand:
- A numeric type
- Acknowledgements

Parts of this activity are based on materials developed by David Bernstein </end>

