It
tttt

CS 149

Professor: Kevin Molloy
(adapted from slides originally developed by Alvin Chao)

'
-

3 ..-.
......

‘ Anatomy of a Java Program: Comments

Javadoc comments:
/**

* Application that converts inches to centimeters.
*

* @author Chris Mayfield
* @version 01/21/2014
*/

Everything between /** and */ ignored by compiler
Used to generate code documentation

Anatomy of a Java Program: Comments

Block comments are used for text that should not
be part of the published documentation:

/%
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction.

*/
In-line comments are used for short clarifying
statements:

// Create a scanner for standard input.

‘ Anatomy of a Java Program: Classes

Java is an object-oriented language (OO)

Java classes tie together instructions and data
All Java code must exist within some class

public class ConvertInches {

}

publicand class are keywords: Words that have a
special meaning for Java.

pub lic- (more later)

C 1 a8 S S - Create a class with the following name. (Must match the

file name)
Class names are always capitalized (by convention)

Braces { and } enclose blocks of code

‘ Anatomy of a Java Program: Methods

Method — named collection
of Java statements:

public class ConvertInches {

public static void main(String[] args) {

}

Later

‘ Anatomy of a Java Program: Methods

Method — named collection
of Java statements:

public class ConvertInches {

public static void main (String[] args) {

}

Later return type
(void means
nothing is
returned)

Anatomy of a Java Program: Methods

Method — named collection
of Java statements:

public class ConvertInches {

public static void main(String[] args) {
Later return type method name
(void means “main” is the
nothing is starting point for all
returned Java programs

Anatomy of a Java Program: Methods

Method — named collection
of Java statements:

public class ConvertInches {

public static void main(String[] args)
Later return type method name argument type
(void means “main” is the starting String[] means
nothing is point for all Java that this method takes
returned) rograms an array of Strings.

Anatomy of a Java Program: Methods

Method — named collection |[argument name

. args will be an array of
Of Java statements: Strings from the command

line.
args[O], args|[1], etc.

public class ConvertInches {

public static void main (St ing[] args)
Later return type method name argument type
(void means “main” is the String[] means
nothing is starting point for all that this method takes
returned) Java programs an array of Strings.

Anatomy of a Java Program: Declaring and
Assigning Variables

variable — named box for storing data:

type name
Defines what the Should always be

variable can hold / informative. “x” is not OK.

int inch;
double cent;
final double CENT PER INCH;

CENT PER INCH = 2.54;

Anatomy of a Java Program: Declaring and
Assigning Variables

variable — named box for storing data:

type name
Defines what the Should always be

variable can hold / informative. “x” is not OK.

int inch;
double cent;
final double CENT PER INCH;

assignment
Puts the val

on the left.

ue on the \
right into the variable
literal value

ALWAYS RIGHT TO LEFT!

CENT PER INCH = 2.54;

Anatomy of a Java Program: Declaring and
Assigning Variables

variable — named box for storing data:

type name
Defines what the Should always be

variable can hold / informative. “x” is not OK.
final \

int inch;
double cent;
final double CENT PER INCH;

makes this variable
a constant

assignment CENT PER INCH = 2.54;

Puts the value on the \
right into the variable .
on the left. literal value

ALWAYS RIGHT TO LEFT!

Anatomy of a Java Program: Standard Library and
Keyboard Input

import java.util.Scanner;

import
/%% *‘—‘—-~—~—~—-—~—"“-—_—____ I

o H H
* Application that converts inches to centimeters. Bnng5|n
* external classes
* (@dauthor Chris Mayfield
* @version 01/21/2014
*/

public class ConvertInches {

public static void main (String[] args) { The Scanner class,
int inch; along with System.in

dousle cemt; are used to read user
final double CENT PER INCH;

CENT PER INCH = 2.54; input from the
terminal

// Create a scanner for standard input.
Scanner keyboard;
keyboard = new Scanner (System.in);

// Prompt the user and get the value.
System.out.print ("How many inches? ");
inch = keyboard.nextInt();

#

Putting it all together...

g
"'ll\:.:
public class ConvertInches {

public static void main(String[] args) ({
int inch;
double cent;
final double CENT PER INCH;
CENT_PER_INCH = 2.54;

// Create a scanner for standard input.
Scanner keyboard;
keyboard = new Scanner (System.in);

multiplication

// Prompt the user and get the value.
System.out.print ("How many inches?
inch = keyboard.nextInt ()

+ joins strings (or
// Convgrt and put the result. adds numbers)
cent = 1nch * CENT PER INCH; i

System.out.print (inch + "in = ");

System.out.println(cent + "cm ");

Reminder: Portability

Most “high-level” languages are considered portable
because they can be compiled into machine code for
any computer:

Java Compilation

Figul‘t: 1-5
Program development proce:
: (ymezmms (" wa)

Byte Code Files are portable e\
because there are JVM's that I
run on most machines)

@ o (e)
The same compiled byte code e \1--/
works on any JVM

/\ThoJa a Virtual Machine / \

\3/’ reads and executes each Java
byte code instructon, \ Virtual Machine
__ ‘_/

. ‘ Which is Syntactically Correct?

public static void main(String[] args)

{
System.out.println("Hello " + args[0] + "!");
System.out.println("Welcome to CS149.");

public class Personal {
public static void main(String[] args)

{
System.out.println("Hello " + args[0] + "!");
System.out.println("Welcome to CS149.");

}

public class Personal

{

// public static void main (String[] args)

{
System.out.println("Hello " + args[0] + "!");
System.out.println("Welcome to CS149.");

}

Which is Syntactically Correct?
(File name is Good.java)

public class Welcome ({
public static void main(String[] args)
{
String name;
name = "Bob";
System.out.println("Hello " + name + "!");
System.out.println ("Welcome to CS149.");

}

public class Good {
public static void main (String[] args)
{
String name;
"Bob" = name;
System.out.println("Hello " + name + "!");
System.out.println ("Welcome to CS149.");

}

public class Good {
public static void main(String[] args)
{
String name;
name = "Bob";
System.out.println("Hello " + name + "!");
System.out.println ("Welcome to CS149.");

N Ohhh}ThAA X

Which is Syntactically Correct?

public class Good
public static void main(String[] args)
{
String name;
name = "Bob";
System.out.println("Hello " + name + "!");
System.out.println ("Welcome to CS149.");

}

public class Good {
public static void main(String[] args)

{
String name;
name = "Bob";

System.out.println("Hello " + name + "!")
System.out.println ("Welcome to CS149.");

}

public class Good {
public static void main(String[] args) {
String name; name = "Bob'";
System.out.println("Hello " + name + "!");
System.out.println ("Welcome to CS149.");}

