It
tttt

CS 149

Professor: Kevin Molloy
(adapted from slides originally developed by Alvin Chao)

'
-

3 ..-.
......

Clarity With If-Else

i,

Imagine we are working on a game application that requires us to determine when the player
has won. Players win when their score exceeds 100 points. Here are five possible
implementations (assume that win is declared as a boolean variable.)

// A // B // C
if (points > 100) { if (points > 100) { if (points > 100) {
win = true; win = true; win = true;
} else if (points < 100){ } else if (points <= 100){ } else {
win = false; win = false; win = false;
} } }
// D // E
if (points > 100) { win = points > 100;
win = true;
}
if (points < 100){
win = false;
}

Calculating Factorials

“In mathematics, the factorial of a non-negative

integer n, denoted by n!, is the product of all n n!
positive integers less than or equal to n. For 0 1
example, 5!=5x4x3x2x1=120"
Source: https://en.wikipedia.org/wiki/Factorial 1 1
1. Consider how to calculate 4! = 24, 2 2
a) Write out all the numbers that need to 3 6
be multiplied: 4 24
Al = 5 | 120
b) Rewrite the expression using 3! instead
of 3x2x1:
4! =

https://en.wikipedia.org/wiki/Factorial

Recursive Approach

1. Write an expression similar to before showing how each factorial
can be calculated in terms of a simpler factorial.

a) 3l=
b) 2!=
c) nl=

2. What s the value of Ol based on the model? Does it make sense
to define 0! in terms of a simpler factorial? Why or why not?

If we repeatedly break down a problem into smaller versions of itself,
we eventually reach a basic problem that can’t be broken down any
further. Such a problem, like 0!, is referred to as the base case.

Recursion Trace

i,

1 |public static int factorial(int n) {

2 System.out.println("n is " + n);

3 if (n == 0) {

4 return 1; // base case

5 } else {

6 System.out.printf ("need factorial of %d\n", n - 1);
7 int answer = factorial(n - 1);

8 System.out.printf("factorial of %d is %d\n", n - 1, answer);
9 return n * answer;

10 }

1 |}

12

13 |public static void main(String[] args) {

14 System.out.println(factorial(3));

15 |}

_ Recursion - Factorials

A method that invokes itself is called recursive.
What two steps were necessary to define

factorial? How were they implemented in Java? n is 3

L need factorial of 2
* How many distinct method calls would be

made to factorial to compute the factorial of
37 Lets review the value of the parameter n

n is 2

need factorial of 1

nis 1
for each of these separate calls. need factorial of 0

* Here is the complete output from the n is 0
program in #5. Identify which distinct factorial of 0 1s 1

i i factorial of 1 is 1
method call printed each line. In other actorial ol 1 18

words, which lines were printed by
factorial(3), which lines were printed by
factorial(2), and so on.

factorial of 2 1is 2
6

* Acknowledgements

Parts of this activity are based on
materials developed by Chris Mayfield
and Nathan Sprague.

</end>

