Chapter 2
Data Manipulation

Dr. Farzana Rahman

Assistant Professor
Department of Computer Science
James Madison University

What the chapter is about?

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices

Big ideas
* How computer manipulates data

 Whatis the basic architecture of computer

 How computeris programmed by means of
encoded instructions, i.e. machine language

LT -
AT

IR

Education

Computer Architecture

Central Processing Unit (CPU) or processor
Bus

Motherboard

RAM

Peripheral devices

Computer Architecture

Keyboard Display
Bus
Hard
—

The Bus

e Whatis a bus?

e |tis asimplified way for many devices to communicate
to each other.

e Lookslike a “highway” for information.

e Actually, more like a “basket” that they all share.

The Bus

The Bus

e Suppose CPU needs to check to see if the user typed
anything.

Keyboard

Bus

The Bus

e CPU puts “Keyboard, did the user type anything?”
(represented in some way) on the Bus.

[[[

CPU Keyboard Display

Bus

“Keyboard, did the user type anything?”

The Bus

e Each device (except CPU) is a State Machine that
constantly checks to see what’s on the Bus.

“Keyboard, did the user type anything?”

The Bus

e Keyboard notices that its name is on the Bus,
and reads info. Other devices ignore the info.

Keyboard

Bus

“Keyboard, did the user type anything?”

The Bus

e Keyboard then writes “CPU: Yes, user typed ‘@’ to Bus.

Keyboard

“CPU: Yes, user typed ‘a’”

The Bus

e At some point, CPU reads the Bus, and gets the
Keyboard’s response.

Keyboard

0

“CPU: Yes, user typed ‘a@’.

Computer Architecture

" Keyboard Display
Bus 1
Hard
—

Inside the CPU

The CPU is the brain of the computer.
It is the part that actually executes the instructions.

Let’s take a look inside.

Some sldes are adapted from Pearson
Education

15

CPU and main memory connected

via a bus

Central processing unit

Register unit

Arithmetic/logic
unit

Bus

Control
unit

Jud- --0ood

General purpose register
Special purpose register

Registers

Some slides are adapted from Pearson Education

Main memory

16

Inside the CPU (cont.)

Memory Registers
Register O

Register 1
Register 2
Register 3

Instruction Register

Program counter

NOMEe S10ec Jare J ()

Arithmetic
/ Logic
Unit

Control Unit
(State Machine)

To hold the current
e iInstruction

€] 0 hold the address
of the current
instructionin RAM

ElollzlsRidelnal/2r:1dNela

Stored Program Concept

* A program can be encoded as bit patterns and
stored in main memory.

* From there, the CPU can then extract the
instructions and execute them.

* [n turn, the program to be executed can be
altered easily.

18
Education

Terminology

* Machine instruction: An instruction (or command)
encoded as a bit pattern recognizable by the CPU

* Machine language: The set of all instructions
recognized by a machine

Some sldes are adapted from Pearson

. 19
Education

Machine Language Philosophies

* Reduced Instruction Set Computing (RISC)
— Few, simple, efficient, and fast instructions

— Examples: PowerPC from Apple/IBM/Motorola
and ARM

 Complex Instruction Set Computing (CISC)

— Many, convenient, and powerful instructions
— Example: Intel

Machine Instruction Types

e Data Transfer: copy data from one location to
another

* Arithmetic/Logic: use existing bit patterns to
compute a new bit patterns

* Control: direct the execution of the program

Adding values stored in memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5_ Smlﬁys are adapted from Pearson s

Education

Dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step GSOSE-EQSBI’,e adapted from Pearson

. 23
Education

The architecture of the machine described in

Appendix C
Central processing unit Main memory
: Address Cell
Registers
o Program counter 00
1 Bus 01
02
12 Instruction register
. 03
L 1F

FF

Parts of a Machine Instruction

* Op-code: Specifies which operation to execute

* Operand: Gives more detailed information about
the operation

— Interpretation of operand varies depending on op-
code

25

|

1

W 0 N O Uk WWDNRE

|

1

Typical Assembly Instructions

LOAD

LOAD directly
STORE
MOVE

ADD

ADD (floating point)
OR

AND

XOR

10. ROTATE

11. JMUP

12. HALT

The composition of an instruction
for the machine in Appendix C

Op-code Operand

|
| | | |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

27

Decoding the instruction 35A7

Instruction«[3 5 A 7
/ I \I

Op-code 3 means

to store the contents This part of the operand identifies
of a register in a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Some sldes are adapted from Pearson
: 28
Education

Encoded
instructions

Translation

156C

166D

5056

306E

C000

29

Program Execution

* Controlled by two special-purpose registers
— Program counter: address of next instruction
— Instruction register: current instruction

* Machine Cycle
— Fetch
— Decode
— Execute

Some sldes are adapted from Pearson
Education

30

The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

Execute

3. Perform the action
required by the
instruction in the
instruction register.

Some sldes are adapted from Pearson

. 31
Education

The program stored in main memory ready for

execution
Program counter contains
address of first instructions.
CPU Main memory
Address Cells
Registers
Program counter A0 15
o [. .
A0 Bus Al L6C |
1 = A2 16 '_Prﬂgrﬂm is
A3 6D stored in
' ' main memory
z |:] A4 50 | beginning at
| address AO.
A5 56
Instruction register A6 30 |
A7 _6E
A8 CO
F [] | |
.00 _

Some sldes are adapted from Pear‘s‘%g

. 32
Education

Performing the fetch step of the

CPU

machine cycle

Program counter

A0

Instruction register |
156C

Bus

Main memory

Address Cells

AQ r@
Al L
A2 16 |
A3 | 6D |

a. At the beginning of the fetch step the instruction starting at address AQ is
retrieved from memory and placed in the instruction register.

Some sldes are adapted from Pearson
Education

33

Performing the fetch step of the
machine cycle (cont’'d)

CPU Main memory
Program counter Address Cells
A2 _ .
Bus AQ 15
: : Al 6C
Instruction register
156C A2 16
A3 6D |

b. Then the program counter is incremented so that it points to the next instruction.

Some sldes are adapted from Pearson
Education

34

A Simple Program

e Wantto add values of variables a and b

(assumed to be in memory), and put the result
in variable c in memory, l.e. ¢ < a+b

* Instructionsin program
— Load a into register r1

— Load b into register r3
—r2<rl1+7r3

— Storer2inc

Running the Program

2
1
3
r1| 2
r2
r3
Memory
r4
IR | Load ainto r1 . Load a into rl
|P 2005 Load b into r3
r2 <rl+r3
Storer2 into c
CPU

Some sldes are adapted from Pearson
Education

2005
2006

2007
2008

36

Running the Program

Memory

Loadaintorl

rlf 2
r2
33
r4
IR | Load b into r3 |«
P 2006
CPU

Some sldes are adapted from Pearson
Education

Load b into r3

r2€rl+r3

Storer2 into c

2005
2006

2007
2008

37

Running the Program

Memory

Loadaintorl

Load b into r3

\

r2 <rl+r3

rl 2
r2 5
r3 3
r4
IR| r2€r1+r3 ||
P 2007
CPU

Storer2 into c

Some sldes are adapted from Pearson
Education

2005
2006

2007
2008

38

Running the Program

A 4

Memory

Loadaintorl

Load b into r3

\

r2 <rl+r3

rl] 2
2| >
r3_3
r4
IR | Store r2 into ¢ —_
|P 2008
CPU

Storer2 into c

Some sldes are adapted from Pearson
Education

2005
2006

2007
2008

39

Running the Program

A 4

Memory

Loadaintorl

Load b into r3

r2 <rl+r3

\

rif 2
r2 5
33
r4
IR | Store r2 into ¢ —_
|P 2008
CPU

Storer2 into c

Some sldes are adapted from Pearson
Education

2005
2006

2007
2008

40

Arithmetic/Logic Operations

* Logic: AND, OR, XOR
— Masking

 Rotate and Shift

* Arithmetic: add, subtract, multiply, divide

41

Rotating the bit pattern 65 (hexadecimal) one
bit to the right

o 1 1 0 0 1 0 1 The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

1 0 1 1 0 0 1

=

The final bit pattern

Some sldes are adapted from Pearson
: 42
Education

Communicating with Other Devices

 Controller: An intermediary apparatus that handles
communication between the computer and a device

— Specialized controllers for each type of device
— General purpose controllers (USB and FireWire)

* Port: The point at which a device connects to a
computer

e Memory-mapped 1/0: CPU communicates with
peripheral devices as though they were memory cells

Some sldes are adapted from Pearson

. 43
Education

Figure 2.13 Controllers attached to a
machine’s bus

CD drive Modem
Controller Controller
Bus m :
: m : Main
CPU m : : : memory

Controller Controller

Monitor Disk drive

Some sldes are adapted from Pearson

. 44
Education

A conceptual representation of memory-
mappedI/0

Bus Main
CPU ——— Mmemaory
T

— Controller — Peripheral device

Some sldes are adapted from Pearson

Education 45

Communicating with Other Devices
(continued)

 Direct memory access (DMA): Controller access
main memory directly over the bus

* Von Neumann Bottleneck: Insufficient bus speed
impedes performance
— CPU and controller compete the bus

* Handshaking: The process of coordinating the
transfer of data between components

— Computer and device exchange information about the
device’s status and coordinate their activities

Some sldes are adapted from Pearson

46
Education

Putting it all together

We learned about

o Architecture of computer

o Componentsof CPU

o Program counter and instruction register

o Machine language using encoded bit patterns
o Machine cycle

o Op code and operand info

o Communicationwith other peripherals

Question

Direct to rahma2fx@jmu.edu

