Chapter 9: Database Systems

Computer Science: An Overview Twelfth Edition

by J. Glenn Brookshear Dennis Brylow

Altered by N. Harris

Objectives of today's session

- Introduce you to the terminology of databases if this is unfamiliar
- Describe the context of databases (why are they necessary)
- Give you a chance to practice writing queries using a postgresql database.

Database

A collection of data that is multidimensional in the sense that internal links between its entries make the information accessible from a variety of perspectives – Brookshear

"A usually large collection of data organized especially for rapid search and retrieval (as by a computer)" – MerriamWebster online

Figure 9.1 A file versus a database organization

a. File-oriented information system

Excel "dbs"

b. Database-oriented information system

Database Management Systems

- Database Management System (DBMS): A software layer that manipulates a database in response to requests from applications
- Distributed Database: A database stored on multiple machines
 - DBMS will mask this organizational detail from its users

Figure 9.2 The conceptual layers of a database implementation

Data independence: The ability to change the organization of a database without changing the application software that uses it

Schemas

- Schema: A description of the structure of an entire database, used by database software to maintain the database
- Database model: A conceptual view of a database
 - Relational database model
 - Object-oriented database model

Relational Database Model

- Relation: A rectangular table
 - Attribute: A column in the table
 - Tuple: A row in the table

Empl Id	Name	Address	SSN
25X15 34Y70 23Y34	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.	111223333 999009999 111005555
-1	•		•
•	•	•	•
•	•	ĕ ≥	•

Activity – Given the database displayed...

Figure 9.5 An employee database consisting of three relations

EMPLOYEE relation

Empl Id	Name	Address	SSN
25X15	Joe E. Baker	33 Nowhere St.	111223333
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555

JOB relation

Job Id	JobTitle	Skill Code	Dept
S25X	Secretary	T5	Personnel
S26Z	Secretary	Т6	Accounting
F5	Floor manager	FM3	Sales
•	•	(·	•
		//●	
•	•	•	

ASSIGNMENT relation

Empl Id	Job Id	Start Date	Term Date
23Y34	S25X	3-1-1999	4-30-2006
34Y70	F5	10-1-2007	*
23Y34	S26Z	5-1-2006	*
	•	•	•
•		•	•
	•	>:•	

Figure 9.6 Finding the departments in which employee 23Y34 has worked

EMPLOYEE relation

Empl Id	Name	Address	SSN
25X15	Joe E. Baker	33 Nowhere St.	111223333
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555
•		•	•
3.0			89.0
	€		

JOB relation

Structured Query Language (SQL)

- Operations to manipulate tuples
 - insert
 - update
 - delete
 - select

Structured Query Language

- Common among relational database systems.
- Each will have its own "dialect" ... functions or conventions
- Consists of a series of "clauses"
- We will focus on the SELECT operation

SQL Examples

SELECT EmplId, Dept
 FROM Assignment JOIN Job
 ON Assignment.JobId = Job.JobId
 WHERE Assignment.TermData = '*';

- SELECT chooses fields
- FROM chooses the tables
- ON describes how to join the tables
- WHERE defines the condition (true display)

SQL Examples (continued)

```
    DELETE FROM Employee
    WHERE Name = 'G. Jerry Smith';
```

```
• UPDATE Employee
SET Address = '1812 Napoleon Ave.'
WHERE Name = 'Joe E. Baker';
```

```
    INSERT INTO Employee
    VALUES ('43212', 'Sue A. Burt',
    '33 Fair St.', '444661111');
```

Lab: Let's Try SQL

Object-relational database system. Open source.

PGAdmin is a graphical tool which you can use to manipulate your databases.

Login

 Login to the lab machines using the student login (student – CSLab248)

Open the pgAdmin tool.

Put in the password CTA2014 when prompted.

Queries

First start with select and a single table.

 Stop and we'll then move on to joining tables together.

 This is just a taste of SQL. There is always much more to learn.

Social Impact of Database Technology

Problems

- Massive amounts of personal data are being collected
 - Often without knowledge or meaningful consent of affected people
- Data merging produces new, more invasive information
- Errors are widely disseminated and hard to correct

Remedies

- Existing legal remedies often difficult to apply
- Negative publicity may be more effective

Lab: Let's Try SQL

