
Copyright © 2015 Pearson Education, Inc.

Chapter 5: �

Algorithms

Computer Science: An Overview
Eleventh Edition

by

J. Glenn Brookshear

Dennis Brylow

Altered by N. Harris

Chapter 5: Algorithms

•  5.1 The Concept of an Algorithm

•  5.2 Algorithm Representation

•  5.3 Algorithm Discovery

•  5.4 Iterative Structures

•  5.5 Recursive Structures

•  5.6 Efficiency and Correctness

What do you already know about

Algorithms?

This activity can be used in a topic where you think

students have misconceptions or where a topic flows from another so

you want to help students with recall.

Initial Activity

•  This activity will let you explore POGIL

(Process Oriented Guided Inquiry

Learning)

•  And lays the groundwork for further

discussion of algorithms.

Brookshear’s Definition of Algorithm

 An algorithm is an ordered set of

unambiguous, executable steps

that defines a terminating process.

So, what was hard about describing

the process of calculating averages?

English as a way of representing

algorithms is lousy. Why?

•  Looking at these algorithms, which one is

the “best”. Why?

English as a way of representing

algorithms is lousy. Why?

• What makes for a good algorithm?

– SCRAP (thanks Alan Crouch)

•  Simple

•  Complete (terminates)

•  Right (produces correct result)

•  Abstraction (hides unnecessary detail – or

separates solution into submodules)

•  Precise (unambiguous language)

Algorithm Representation

•  Requires well-defined primitives

•  A collection of primitives constitutes a

programming language.

•  Helps with the clarity of the algorithm.

Pseudo code or code?

•  Pseudo code is a shorthand way of

expressing an algorithm.

•  It is frequently a combination of code but

without some of the detail…“a miracle

occurs here” for example.

•  Brookshear spends a section on pseudo code…

teaching students a separate “language” for

pseudo code can be confusing.

Polya’s Problem Solving Steps

•  1. Understand the problem.

•  2. Devise a plan for solving the problem.

•  3. Carry out the plan.

•  4. Evaluate the solution for accuracy and

its potential as a tool for solving other

problems.

Polya’s Steps in the Context of

Program Development

•  1. Understand the problem.

–  This is where examples come in.

–  If you can come up with your own examples, you

understand the nature of the problem.

•  2. Get an idea of how an algorithmic function might solve

the problem.

•  3. Formulate the algorithm and represent it as a program.

–  These often are different steps. Design and then implementation.

•  4. Evaluate the solution for accuracy and its potential as

a tool for solving other problems.

Getting a Foot in the Door

•  Try working the problem backwards

•  Solve an easier related problem

– Relax some of the problem constraints

– Solve pieces of the problem first (bottom up

methodology)

•  Stepwise refinement: Divide the problem into

smaller problems (top-down methodology)

Figure 5.6 The sequential search

algorithm in pseudocode

def Search (List, TargetValue):

 if (List is empty):

 Declare search a failure (“a miracle occurs”)

 else:

 Select the first entry in List to be TestEntry

 while (TargetValue > TestEntry and entries remain):

 Select the next entry in List as TestEntry

 if (TargetValue == TestEntry):

 Declare search a success

 else:

 Declare search a failure

Note, this algorithm is using Python primitives for decision

looping and definition of a procedure.

Primitives

•  Assignment

variable = value (variable is assigned

value)

•  Decision

if variable < value:

 do something

elif variable > value:

 do something else

else:

 final alternative

Primitives

•  Iteration

while variable < value:

 do something

 update variable

•  Procedure

def foo(bar):

 do something

 return something

