Chapter 35:
Algorithms

Computer Science: An Overview
Eleventh Edition

by
J. Glenn Brookshear
Dennis Brylow

Altered by N. Harris

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.
S e




51T
5.2 A
5.3 A

ne Concept of an Algorithm
gorithm Representation

gorithm Discovery

5.4 lterative Structures
5.5 Recursive Structures
5.6 Efficiency and Correctness



What do you already know about
Algorithms?

This activity can be used in a topic where you think
students have misconceptions or where a topic flows from another so
you want to help students with recall.



This activity will let you explore POGIL
(Process Oriented Guided Inquiry
Learning)

And lays the groundwork for further
discussion of algorithms.



An algorithm is an ordered set of
unambiguous, executable steps
that defines a terminating process.



So, what was hard about describing
the process of calculating averages?



English as a way of representing
algorithms is lousy. Why?

» Looking at these algorithms, which one is
the "best”. Why?



What makes for a good algorithm?

SCRAP (thanks Alan Crouch)
Simple
Complete (terminates)
Right (produces correct result)

Abstraction (hides unnecessary detail — or
separates solution into submodules)

Precise (unambiguous language)



Requires well-defined primitives

A collection of primitives constitutes a
programming language.

Helps with the clarity of the algorithm.



Pseudo code is a shorthand way of
expressing an algorithm.

It is frequently a combination of code but
without some of the detail..."a miracle
occurs here” for example.

Brookshear spends a section on pseudo code...
teaching students a separate “language” for
pseudo code can be confusing.



1. Understand the problem.
2. Devise a plan for solving the problem.
3. Carry out the plan.

4. Evaluate the solution for accuracy and
its potential as a tool for solving other
problems.



1. Understand the problem.
This is where examples come in.

If you can come up with your own examples, you
understand the nature of the problem.
2. Get an idea of how an algorithmic function might solve
the problem.

3. Formulate the algorithm and represent it as a program.
These often are different steps. Design and then implementation.

4. Evaluate the solution for accuracy and its potential as
a tool for solving other problems.



Try working the problem backwards
Solve an easier related problem
Relax some of the problem constraints

Solve pieces of the problem first (bottom up
methodology)

Stepwise refinement: Divide the problem into
smaller problems (top-down methodology)



Figure 5.6 The sequential search
algorithm in pseudocode

def Search (List, TargetValue):
if (List is empty):
Declare search a failure (“a miracle occurs”)
else:
Select the first entry in List to be TestEntry
while (TargetValue > TestEntry and entries remain):
Select the next entry in List as TestEntry
if (TargetValue == TestEntry):
Declare search a success
else:
Declare search a failure

Note, this algorithm 1s using Python primitives for decision
looping and definition of a procedure.



Assignment

variable = value (variable is assigned
value)

Decision

1f variable < value:
do something

elif variable > value:
do something else

else:

final alternative



lteration
while variable < wvalue:
do something

update variable

Procedure
def foo (bar):
do something

return something



