
CS Teaching Academy

Chapter 6, Module 2: Programming Paradigms / OOP

Objectives

  Identify and differentiate major programming paradigms

  Understand and explain principles of Object Oriented
Programming

Programming Paradigms

  Functional

  Based on Lambda Calculus (theory of functions)

  Ex: Lisp, Scheme, Racket

  Declarative

  Based on First Order Predicate Logic or Production System

  Ex: Prolog (FOPL), OPS5, CLIPS, Jess (PS)

  Imperative

  Based on Von Neumann architecture

  Procedural or Object Oriented

Programming Today

Imperative Programming

  Von Neumann Machine (John von Neumann, 1903-1957)

1.  Instruction execution is sequential

2.  Program variables represent memory

3.  Primary goal is efficient use of hardware (CPU, memory)

CPU Memory
ALU

IEU

Bus

Imperative Programming Generations

  Gen 1: Linear Programming (go-to's)
  "spaghetti code"

  Gen 2: Structured programming
  procedural decomposition

  Gen 3: Object-Oriented Programming
  abstraction, encapsulation, inheritance

main

proc1 proc2

proc3 proc4

Principles of OOP

1.  Abstraction

2.  Inheritance

3.  Encapsulation

4.  Data Hiding

5.  Polymorphism

Abstraction

  Abstraction:
  (n): a model of an application domain entity

  (v): to create models in software

  Invented for complex system modeling & simulation

  Simula modeling language

  Expanded for general programming in SmallTalk

  Ex: Banking System abstractions

  account, customer, transaction, money, statement, employee, ...

Abstraction

  Each abstraction produces a set of objects (a class)

  Each object is unique

  Components of an Abstraction

  Attributes (instance variables, unique to objects)

  Methods (procedures, shared by objects)

Inheritance

  Software reuse through expansion

  Inheritance creates sub-classes

  Sub-classes add attributes and methods to parents

  Ex: Library
Holding

Call Nr.
Title

Book

ISBN Nr.
Page Count

DVD

Region Code
Running Time

Encapsulation

  Each entity is enclosed in a single abstraction

  A significant change from structured programming

  attributes are scattered among procedures

Customer
all Customer attributes

all Customer procedures

Data Hiding

  Attributes are hidden from the outside world

  Access is controlled through methods

  Advantages:

  Promotes correctness (access to attributes is validated)

  Allows attributes to be modified independently of other classes

Class

Attributes

Methods

Other
Class

NO!

Polymorphism

  "Multiple forms"

  Access can be generic, via inheritance structures

Person

name

getName()

Student Employee

Staff Faculty

Faculty fac = new Faculty();
String name = fac.getName();

displayPerson(fac);

procedure displayPerson(Person p)
{
 ...
}

Summary

  Programming Paradigms

  Linear (spaghetti code)

  Structured (procedural decomposition)

  Object-Oriented (abstraction)

  Principles of OOP

  Abstraction

  Inheritance

  Encapsulation (is NOT data hiding)

  Data Hiding

  Polymorphism

