
CS Teaching Academy

Chapter 6, Module 2: Programming Paradigms / OOP

Objectives

  Identify and differentiate major programming paradigms

  Understand and explain principles of Object Oriented
Programming

Programming Paradigms

  Functional

  Based on Lambda Calculus (theory of functions)

  Ex: Lisp, Scheme, Racket

  Declarative

  Based on First Order Predicate Logic or Production System

  Ex: Prolog (FOPL), OPS5, CLIPS, Jess (PS)

  Imperative

  Based on Von Neumann architecture

  Procedural or Object Oriented

Programming Today

Imperative Programming

  Von Neumann Machine (John von Neumann, 1903-1957)

1.  Instruction execution is sequential

2.  Program variables represent memory

3.  Primary goal is efficient use of hardware (CPU, memory)

CPU Memory
ALU

IEU

Bus

Imperative Programming Generations

  Gen 1: Linear Programming (go-to's)
  "spaghetti code"

  Gen 2: Structured programming
  procedural decomposition

  Gen 3: Object-Oriented Programming
  abstraction, encapsulation, inheritance

main

proc1 proc2

proc3 proc4

Principles of OOP

1.  Abstraction

2.  Inheritance

3.  Encapsulation

4.  Data Hiding

5.  Polymorphism

Abstraction

  Abstraction:
  (n): a model of an application domain entity

  (v): to create models in software

  Invented for complex system modeling & simulation

  Simula modeling language

  Expanded for general programming in SmallTalk

  Ex: Banking System abstractions

  account, customer, transaction, money, statement, employee, ...

Abstraction

  Each abstraction produces a set of objects (a class)

  Each object is unique

  Components of an Abstraction

  Attributes (instance variables, unique to objects)

  Methods (procedures, shared by objects)

Inheritance

  Software reuse through expansion

  Inheritance creates sub-classes

  Sub-classes add attributes and methods to parents

  Ex: Library
Holding

Call Nr.
Title

Book

ISBN Nr.
Page Count

DVD

Region Code
Running Time

Encapsulation

  Each entity is enclosed in a single abstraction

  A significant change from structured programming

  attributes are scattered among procedures

Customer
all Customer attributes

all Customer procedures

Data Hiding

  Attributes are hidden from the outside world

  Access is controlled through methods

  Advantages:

  Promotes correctness (access to attributes is validated)

  Allows attributes to be modified independently of other classes

Class

Attributes

Methods

Other
Class

NO!

Polymorphism

  "Multiple forms"

  Access can be generic, via inheritance structures

Person

name

getName()

Student Employee

Staff Faculty

Faculty fac = new Faculty();
String name = fac.getName();

displayPerson(fac);

procedure displayPerson(Person p)
{
 ...
}

Summary

  Programming Paradigms

  Linear (spaghetti code)

  Structured (procedural decomposition)

  Object-Oriented (abstraction)

  Principles of OOP

  Abstraction

  Inheritance

  Encapsulation (is NOT data hiding)

  Data Hiding

  Polymorphism

