
CS Teaching Academy

Chapter 6, Module 1: Programming Language Implementation

Objectives

  Identify the essential phases of program compilation

  Understand the different modes of language
implementation

Language Generations

  Gen 1: Machine Language

  Gen 2: Assembly Language
  mnemonics vs. binary

  Gen 3: High-Level Language
(e.g., Fortran, Cobol, ...)
  powerful expressions

  Gen 4: ??? report generators, visual programming

Program Compilation Phases

1.  Lexical Analysis

  What elements are in the program?
a = b + c * 10 ;!

2.  Parsing

  What does the program mean?

  Are there syntax errors?

3.  Code Generation (& Optimization)

  Translate the program to an executable form.

b c

+ 10

*

=

a

mypgm.exe
101110100
001010001
111010000

Syntax Definition

  Backus-Naur form (BNF)
<assign> !:= <operand> = <expression>!

<expression>!:= <expression> <operator> <expression> | <term>!

<term> !:= <variable> | <literal>!

<operator> !:= + | - | * | / | ^ | %!

  Standard for language definition since Algol (~1960)

  Supports automation of lexical analysis, syntax analysis

Implementation Forms

  Compiled

  source code => object code => machine code

  Interpreted

  source code is processed directly by an interpreter

  Hybrid

  1) source code => intermediate code ("byte code")

  2a) intermediate code input by Virtual Machine (interpreter)

  2b) intermediate code compiled "just in time" to machine code

Compilation

  Source code is translated to object code

  Object code is linked into machine code

  Examples: C, C++, Fortran

  Advantages?

Source
Code

Object
Code

Machine
Code

Translate Link

Input

Output

Compilation

  Source code is translated to object code

  Object code is linked into machine code

  Examples: C, C++, Fortran

  Advantages:
Highly efficient (fast) execution

Source
Code

Object
Code

Machine
Code

Translate Link

Input

Output

Interpretation

  An interpreter (program) processes the source program

  The interpreter acts as a "virtual machine"

  Examples: JavaScript, Perl

  Advantages?

Source
Program

Interpreter
(VM)

Input

Output

Interpretation

  An interpreter (program) processes the source program

  The interpreter acts as a "virtual machine"

  Examples: JavaScript, Perl

  Advantages:
Immediate execution - no wait for compilation
Robust exception handling

Source
Program

Interpreter
(VM)

Input

Output

Hybrid Implementation

  Source code is first translated to intermediate code

  Intermediate code is
  a) interpreted by a VM, or

  b) compiled "just in time"

  Examples: Java (VM), C# .Net (JIT)

  Advantages?

Source
Code

Intermediate
Code

Translate
Interpreter

JIT
Compiler

Machine
Code

Hybrid Implementation

  Source code is first translated to intermediate code

  Intermediate code is
  a) interpreted by a VM, or

  b) compiled "just in time"

  Examples: Java (VM), C# .Net (JIT)

  Advantages:
  Most of the efficiency of pre-compiled code

  Portability

Source
Code

Intermediate
Code

Translate
Interpreter

JIT
Compiler

Machine
Code

Summary

  Language Generations
  Machine Code, Assembly Language, High Level Language

  Program Compilation Phases:
  Lexical Analysis => Parsing => Code Generation

  Backus-Naur Form (BNF)

  Implementation Forms
  Compilation (advantage: efficiency)

  Interpretation (advantage: immediacy)

  Hybrid (advantage: portability)

  Virtual Machine

  JIT Compilation

