
CS Teaching Academy

Chapter 6, Module 1: Programming Language Implementation

Objectives

  Identify the essential phases of program compilation

  Understand the different modes of language
implementation

Language Generations

  Gen 1: Machine Language

  Gen 2: Assembly Language
  mnemonics vs. binary

  Gen 3: High-Level Language
(e.g., Fortran, Cobol, ...)
  powerful expressions

  Gen 4: ??? report generators, visual programming

Program Compilation Phases

1.  Lexical Analysis

  What elements are in the program?
a = b + c * 10 ;!

2.  Parsing

  What does the program mean?

  Are there syntax errors?

3.  Code Generation (& Optimization)

  Translate the program to an executable form.

b c

+ 10

*

=

a

mypgm.exe
101110100
001010001
111010000

Syntax Definition

  Backus-Naur form (BNF)
<assign> !:= <operand> = <expression>!

<expression>!:= <expression> <operator> <expression> | <term>!

<term> !:= <variable> | <literal>!

<operator> !:= + | - | * | / | ^ | %!

  Standard for language definition since Algol (~1960)

  Supports automation of lexical analysis, syntax analysis

Implementation Forms

  Compiled

  source code => object code => machine code

  Interpreted

  source code is processed directly by an interpreter

  Hybrid

  1) source code => intermediate code ("byte code")

  2a) intermediate code input by Virtual Machine (interpreter)

  2b) intermediate code compiled "just in time" to machine code

Compilation

  Source code is translated to object code

  Object code is linked into machine code

  Examples: C, C++, Fortran

  Advantages?

Source
Code

Object
Code

Machine
Code

Translate Link

Input

Output

Compilation

  Source code is translated to object code

  Object code is linked into machine code

  Examples: C, C++, Fortran

  Advantages:
Highly efficient (fast) execution

Source
Code

Object
Code

Machine
Code

Translate Link

Input

Output

Interpretation

  An interpreter (program) processes the source program

  The interpreter acts as a "virtual machine"

  Examples: JavaScript, Perl

  Advantages?

Source
Program

Interpreter
(VM)

Input

Output

Interpretation

  An interpreter (program) processes the source program

  The interpreter acts as a "virtual machine"

  Examples: JavaScript, Perl

  Advantages:
Immediate execution - no wait for compilation
Robust exception handling

Source
Program

Interpreter
(VM)

Input

Output

Hybrid Implementation

  Source code is first translated to intermediate code

  Intermediate code is
  a) interpreted by a VM, or

  b) compiled "just in time"

  Examples: Java (VM), C# .Net (JIT)

  Advantages?

Source
Code

Intermediate
Code

Translate
Interpreter

JIT
Compiler

Machine
Code

Hybrid Implementation

  Source code is first translated to intermediate code

  Intermediate code is
  a) interpreted by a VM, or

  b) compiled "just in time"

  Examples: Java (VM), C# .Net (JIT)

  Advantages:
  Most of the efficiency of pre-compiled code

  Portability

Source
Code

Intermediate
Code

Translate
Interpreter

JIT
Compiler

Machine
Code

Summary

  Language Generations
  Machine Code, Assembly Language, High Level Language

  Program Compilation Phases:
  Lexical Analysis => Parsing => Code Generation

  Backus-Naur Form (BNF)

  Implementation Forms
  Compilation (advantage: efficiency)

  Interpretation (advantage: immediacy)

  Hybrid (advantage: portability)

  Virtual Machine

  JIT Compilation

