CS Teaching Academy

Chapter 5, Module 2: Efficiency & Correctness

Program Efficiency Perspectives
» Program level:
reduce execution cost by execution
optimizing algorithms and data cost
compilers do this automatically '

» Algorithmic

choose algorithms based on their complexity
cost profiles,
also known as cost complexity

unoptimized optimized

level:

cost

input size

Cost Complexity of an Algorithm

» Growth in cost with respect to problem size

mmm

2000
B 100 10000 1000000 n2
C 4 7 10 log2(n)

Operations Required

Cost = number of operations required, average or worst case
Independent of computer hardware
Determined based on algorithm properties only

Common Cost Complexity Classes

O(@")
o(n?)

O(n)

O(log(n))

Scalability & Tractability

» A scalable algorithm has a cost with linear growth or less

» An intractible algorithm is too expensive to execute
for practical problem sizes

| Cost | __N=10__|N=100 | N=1000 | N=10,000 | N=100,000

log2(n) 3us 6.7us | Ous | 3ms | 7ms
n | Ous 1 00us |.0ms |Oms 100ms
n? 100us |Oms I's |.7m 2.8h
2" I ms 4.0x10'ey

Processing Time, assuming |10 operations / second

Scalability & Tractability

Tractable

Scalable \
O(log(n))

Example: Sequential Search

Algorithm Worst-Case

Count*

1. int search(int[] source, key) { 1

2. for (int 1i=0; i<source.length; i++) { l1+n+n

3. if (key == source[i]) { n

4. return i; 1

5. }

6. return -1; 1

7. }

Worst-case cost = (4 + 3n), O(n)

* as a function of n = size of the array

Example: Binary Search

Algorithm Worst-Case
Count~*
int search(int[] source, int key, int from, int to) { log2(n)
if (from > to) { log2(n)
return -1; 1
}
int middle = (from + to) / 2; log2(n)
if (key == source[middle]) { log2(n)
return middle; 1
}
if (key < source[middle]) { log2(n)
return search(source, key, from, middle-1); log2(n)
}
return search(source, key, middle+l, to); log2(n)

Worst-case cost = (2 + 71log2(n)), O(log(n))

Some Well-Known Sort Algorithms

Algorithm Worst-Case Time Cost

Bubble Sort O(n?)
Insertion Sort O(n?)
Merge Sort O(n log(n))

Heap Sort O(n log(n))

Summary

» Program efficiency can be examined
with respect to implementation (execution cost)
with respect to the algorithm only (complexity)

» Common complexity classes include
Scalable: log(n) and n
Tractable: n? (and below, i.e., scalable)

Intractable: 2" (and above)

