
CS Teaching Academy

Chapter 5, Module 2: Efficiency & Correctness

Program Efficiency Perspectives
}  Program level:

}  reduce execution cost by
optimizing algorithms and data

}  compilers do this automatically

}  Algorithmic level:
}  choose algorithms based on their

cost profiles,
also known as cost complexity

unoptimized optimized

execution
cost

cost
complexity

input size

Cost Complexity of an Algorithm
}  Growth in cost with respect to problem size

}  Cost = number of operations required, average or worst case
}  Independent of computer hardware
}  Determined based on algorithm properties only

Algorithm Size=10 Size=100 Size=1000 Cost

A 20 200 2000 2n

B 100 10000 1000000 n2

C 4 7 10 log2(n)

Operations Required

Common Cost Complexity Classes

O(n)

O(log(n))

O(na)
O(an)

Scalability & Tractability
}  A scalable algorithm has a cost with linear growth or less
}  An intractible algorithm is too expensive to execute

for practical problem sizes

Cost N=10 N=100 N=1000 N=10,000 N=100,000

log2(n) 3us 6.7us 10us 13ms 17ms

n 10us 100us 1.0ms 10ms 100ms

n2 100us 10ms 1s 1.7m 2.8h

2n 1ms 4.0x1016y

Processing Time, assuming 106 operations / second

Scalability & Tractability

O(n)

O(log(n))

O(na)
O(an)

Scalable

Tractable

Example: Sequential Search
! ! !Algorithm ! ! ! !Worst-Case!
! ! ! ! ! ! ! !Count*!
!
1. int search(int[] source, key) { ! !1!
2. for (int i=0; i<source.length; i++) { !1+n+n!
3. if (key == source[i]) { ! ! !n!
4. return i; ! ! ! ! !1!
5. }!
6. return -1; ! ! ! ! !1!
7. }!
!
Worst-case cost = (4 + 3n), O(n)!
!
!
* as a function of n = size of the array!

Example: Binary Search
! ! !Algorithm ! ! ! ! !Worst-Case!
! ! ! ! ! ! ! ! !Count*!

!
 int search(int[] source, int key, int from, int to) { !log2(n)!
 if (from > to) { ! ! ! ! ! !log2(n)!
 return -1; ! ! ! ! ! !1!
 } ! !!
 int middle = (from + to) / 2; ! ! ! !log2(n) !
 if (key == source[middle]) { ! ! ! !log2(n)!
 return middle; ! ! ! ! ! !1!
 } !
 if (key < source[middle]) { ! ! ! !log2(n) !
 return search(source, key, from, middle-1); ! !log2(n)!
 }!
 return search(source, key, middle+1, to); ! !log2(n)!
 } !
!
!
Worst-case cost = (2 + 7log2(n)), O(log(n))!
!

Some Well-Known Sort Algorithms

Algorithm Worst-Case Time Cost

Bubble Sort O(n2)

Insertion Sort O(n2)

Merge Sort O(n log(n))

Heap Sort O(n log(n))

Summary
}  Program efficiency can be examined

}  with respect to implementation (execution cost)
}  with respect to the algorithm only (complexity)

}  Common complexity classes include
}  Scalable: log(n) and n
}  Tractable: n2 (and below, i.e., scalable)
}  Intractable: 2n (and above)

