
Data Storage
JMU Computer Science Content Teaching Academy 2014

Florian Buchholz
buchhofp@jmu.edu

Abstraction layers to interpret data

and information

•  Physical layer
–  Data is physically stored

•  Device BIOS
–  Chunks of data can be read/written

•  Partitions

•  File System
–  Naming capabilities

–  Metadata

•  Application layer(s)
–  Data becomes information

–  Several layers possible

How data is stored on physical

media

•  Link between analog and digital world

•  Encode bits as physical manifestations
–  Magnetic (hard drives)

–  Optical (CD, DVD)

•  Bits read and written by head off disk surface
–  Magnetic head

–  Laser (optical)

•  Surface imperfections, magnetic interference,
dirt, etc. can cause errors

–  Limited error correction possible

Microscope images of disk surfaces

Flash chip

Memory chip

Physical data organization

•  Platter/Cylinder/Layer/Head
–  Denotes the layer on which data resides if more than

one is present

•  Track
–  Concentric circle track on a layer

•  Sector
–  Fragment of a track

–  Result of “intersection of lines” from the center of the
disk to outer edge

•  Cluster
–  Several successive sectors on the same track

Organization of one disk layer

Figure 1.12 Logical records versus

physical records on a disk

Device BIOS

•  Abstraction layer to the next level

•  Translates physical addressing scheme to logical
–  Cyl/Track/Sec to a logical sector/cluster number

–  Disk is seen as contiguous space

•  Device can be queried and modified
–  “Give me the data from Sector x”

–  “Write this data to Sector y”

–  Sectors are typically 512 bytes

•  BIOS also re-maps bad sectors

•  Host Protected Area

–  Keeps statistics and mappings

Partition layer

•  Divides disk space up into logical units

•  Master boot record

•  Primary partitions

•  Logical partition

•  Separation of information

•  Different file systems can be used on the

same disk

File system layer

•  View partition as contiguous block of space.
–  Smallest unit that can be addressed is a sector/block/cluster

•  Allows naming of files
–  Data is associated with a name, where data is stored within the

partition is irrelevant.

–  Maps space “belonging” to file to sectors/blocks

•  Directory hierarchy
–  Organize files

–  Unique paths: files of same name can exist

•  Metadata
–  Timestamps

–  User information

–  Permissions

Application layer

•  To this point all abstraction layers merely provide

a “blob of bits”

–  Raw data has no meaning

•  Applications interpret the data as information

•  Extract data necessary for application

–  Image data, text, sound, etc.

•  Metadata

–  Comments, timestamps, user information, etc.

Different views of a file

Different views of a file

 Format: JPEG (Joint Photographic Experts Group JFIF format)

 Geometry: 640x481

 Class: DirectClass

 Type: TrueColor

 Endianess: Undefined

 Colorspace: RGB

 Depth: 8 bits

 Channel depth:

 Red: 8-bits

 Green: 8-bits

 Blue: 8-bits

 Channel statistics:

 Red:

 Min: 0 (0)

 Max: 255 (1)

 Mean: 101.175 (0.396763)

 Standard deviation: 48.6853 (0.190923)

 Green:

 Min: 0 (0)

 Max: 255 (1)

 Mean: 81.2703 (0.318707)

 Standard deviation: 49.2262 (0.193044)

 Blue:

 Min: 0 (0)

 Max: 255 (1)

 Mean: 70.9726 (0.278324)

 Standard deviation: 51.1614 (0.200633)

 Colors: 32917

Rendering-intent: Undefined

 Resolution: 72x72

 Units: PixelsPerInch

 Filesize: 280kb

 Interlace: None

 Background Color: white

 Border Color: #DFDFDF

 Matte Color: grey74

 Dispose: Undefined

 Iterations: 0

 Compression: JPEG

 Quality: 99

 Orientation: Undefined

 JPEG-Colorspace: 2

 JPEG-Sampling-factors: 1x1,1x1,1x1

 Signature:
0f439ec4bd57f9311a709ea5feed539865563aee181fa9495ba5
188b0b197fa1

 Profile-xmp: 6461 bytes

 Profile-exif: 5859 bytes

 Orientation: 1

 X Resolution: 72/1

 Y Resolution: 72/1

 Resolution Unit: 2

 Software: Adobe Photoshop CS Macintosh.

 Date Time: 2005:12:01 17:40:18.

 Exif Offset: 164

 Color Space: 65535

Different views of a file

00000000 ff d8 ff e0 00 10 4a 46 49 46 00 01 02 01 00 48 |......JFIF.....H|!

00000010 00 48 00 00 ff e1 16 e5 45 78 69 66 00 00 4d 4d |.H......Exif..MM|!

00000020 00 2a 00 00 00 08 00 07 01 12 00 03 00 00 00 01 |.*..............|!

00000030 00 01 00 00 01 1a 00 05 00 00 00 01 00 00 00 62 |...............b|!

00000040 01 1b 00 05 00 00 00 01 00 00 00 6a 01 28 00 03 |...........j.(..|!

00000050 00 00 00 01 00 02 00 00 01 31 00 02 00 00 00 1d |.........1......|!

00000060 00 00 00 72 01 32 00 02 00 00 00 14 00 00 00 8f |...r.2..........|!

00000070 87 69 00 04 00 00 00 01 00 00 00 a4 00 00 00 d0 |.i..............|!

00000080 00 00 00 48 00 00 00 01 00 00 00 48 00 00 00 01 |...H.......H....|!

00000090 41 64 6f 62 65 20 50 68 6f 74 6f 73 68 6f 70 20 |Adobe Photoshop |!

000000a0 43 53 20 4d 61 63 69 6e 74 6f 73 68 00 32 30 30 |CS Macintosh.200|!

000000b0 35 3a 31 32 3a 30 31 20 31 37 3a 34 30 3a 31 38 |5:12:01 17:40:18|!

…!
!

Representing Images

•  Bit map techniques
– Pixel: short for “picture element”
– RGB

– Luminance and chrominance

•  Vector techniques
– Scalable

– TrueType and PostScript

Bitmap files

•  Header information at start of the file
–  Contains information about the image

•  The remainder of the file is a list of pixel data
–  Three color values for each pixel

•  Red, green, blue

•  Generally 1 byte for each color (24-bit bitmap)

–  First pixel in the file is generally in lower right corner of
the image

•  Can be in upper right corner if “height” value is negative

–  Information from the header is used to determine
when a new line starts

Bitmap header

Byte order (Endianness)

•  When more than one byte is needed to represent an
integer, it is important to know how the computer
architecture stores the bytes

•  Little-endian
–  The least significant byte is stored first

•  If we want to store 0x01020304, then the on-disk (or in-memory)
bytes look like this:
04 03 02 01

•  Big-endian
–  The most significant byte is stored first

•  If we want to store 0x01020304, then the on-disk (or in-memory)
bytes look like this:
01 02 03 04

