Data Storage JMU Computer Science Content Teaching Academy 2014

Florian Buchholz buchhofp@jmu.edu

Abstraction layers to interpret data and information

- Physical layer
 - Data is physically stored
- Device BIOS
 - Chunks of data can be read/written
- Partitions
- File System
 - Naming capabilities
 - Metadata
- Application layer(s)
 - Data becomes information
 - Several layers possible

How data is stored on physical media

- Link between analog and digital world
- Encode bits as physical manifestations
 - Magnetic (hard drives)
 - Optical (CD, DVD)
- Bits read and written by head off disk surface
 - Magnetic head
 - Laser (optical)
- Surface imperfections, magnetic interference, dirt, etc. can cause errors
 - Limited error correction possible

Microscope images of disk surfaces

Surface Texture

Magnetic Force Image

Flash chip

Memory chip

Physical data organization

- Platter/Cylinder/Layer/Head
 - Denotes the layer on which data resides if more than one is present
- Track
 - Concentric circle track on a layer
- Sector
 - Fragment of a track
 - Result of "intersection of lines" from the center of the disk to outer edge
- Cluster
 - Several successive sectors on the same track

Organization of one disk layer

Figure 1.12 Logical records versus physical records on a disk

Device BIOS

- Abstraction layer to the next level
- Translates physical addressing scheme to logical
 - Cyl/Track/Sec to a logical sector/cluster number
 - Disk is seen as contiguous space
- Device can be queried and modified
 - "Give me the data from Sector x"
 - "Write this data to Sector y"
 - Sectors are typically 512 bytes
- BIOS also re-maps bad sectors
- Host Protected Area
 - Keeps statistics and mappings

Partition layer

- Divides disk space up into logical units
- Master boot record
- Primary partitions
- Logical partition
- Separation of information
- Different file systems can be used on the same disk

File system layer

- View partition as contiguous block of space.
 - Smallest unit that can be addressed is a sector/block/cluster
- Allows naming of files
 - Data is associated with a name, where data is stored within the partition is irrelevant.
 - Maps space "belonging" to file to sectors/blocks
- Directory hierarchy
 - Organize files
 - Unique paths: files of same name can exist
- Metadata
 - Timestamps
 - User information
 - Permissions

Application layer

- To this point all abstraction layers merely provide a "blob of bits"
 - Raw data has no meaning
- Applications interpret the data as information
- Extract data necessary for application
 - Image data, text, sound, etc.
- Metadata
 - Comments, timestamps, user information, etc.

Different views of a file

Different views of a file

Format: JPEG (Joint Photographic Experts Group JFIF format) Geometry: 640x481 Class: DirectClass Type: TrueColor **Endianess: Undefined** Colorspace: RGB Depth: 8 bits Channel depth: Red: 8-bits Green: 8-bits Blue: 8-bits Channel statistics: Red: Min: 0 (0) Max: 255 (1) Mean: 101.175 (0.396763) Standard deviation: 48.6853 (0.190923) Green: Min: 0 (0) Max: 255 (1) Mean: 81.2703 (0.318707) Standard deviation: 49.2262 (0.193044) Blue: Min: 0 (0) Max: 255 (1) Mean: 70.9726 (0.278324) Standard deviation: 51.1614 (0.200633) Colors: 32917

Rendering-intent: Undefined Resolution: 72x72 Units: PixelsPerInch Filesize: 280kb Interlace: None Background Color: white Border Color: #DFDFDF Matte Color: grey74 **Dispose: Undefined** Iterations: 0 Compression: JPEG Quality: 99 Orientation: Undefined JPEG-Colorspace: 2 JPEG-Sampling-factors: 1x1,1x1,1x1 Signature: 0f439ec4bd57f9311a709ea5feed539865563aee181fa9495ba5 188b0b197fa1 Profile-xmp: 6461 bytes Profile-exif: 5859 bytes Orientation: 1 X Resolution: 72/1 Y Resolution: 72/1 **Resolution Unit: 2** Software: Adobe Photoshop CS Macintosh. Date Time: 2005:12:01 17:40:18. Exif Offset: 164 Color Space: 65535

Different views of a file

•••

00000000	ff	d8	ff	e0	00	10	4a	46	49	46	00	01	02	01	00	48	$ \dots$ JFIFH
0000010	00	48	00	00	ff	e1	16	e5	45	78	69	66	00	00	4d	4d	.HExifMM
00000020	00	2a	00	00	00	08	00	07	01	12	00	03	00	00	00	01	.*
00000030	00	01	00	00	01	1a	00	05	00	00	00	01	00	00	00	62	b
00000040	01	1b	00	05	00	00	00	01	00	00	00	6a	01	28	00	03	j.(
00000050	00	00	00	01	00	02	00	00	01	31	00	02	00	00	00	1d	$ \ldots\ldots 1 \ldots $
00000060	00	00	00	72	01	32	00	02	00	00	00	14	00	00	00	8f	$ \dots$ r.2
00000070	87	69	00	04	00	00	00	01	00	00	00	a4	00	00	00	d0	.i
0800000	00	00	00	48	00	00	00	01	00	00	00	48	00	00	00	01	$ \ldots \texttt{H} \ldots \texttt{H} $
00000090	41	64	6f	62	65	20	50	68	6f	74	6f	73	68	6f	70	20	Adobe Photoshop
000000a0	43	53	20	4d	61	63	69	6e	74	6f	73	68	00	32	30	30	CS Macintosh.200
000000b0	35	3a	31	32	3a	30	31	20	31	37	3a	34	30	3a	31	38	5:12:01 17:40:18

Representing Images

- Bit map techniques
 - Pixel: short for "picture element"
 - RGB
 - Luminance and chrominance
- Vector techniques
 - Scalable
 - TrueType and PostScript

Bitmap files

- Header information at start of the file
 Contains information about the image
- The remainder of the file is a list of pixel data
 - Three color values for each pixel
 - Red, green, blue
 - Generally 1 byte for each color (24-bit bitmap)
 - First pixel in the file is generally in lower right corner of the image
 - Can be in upper right corner if "height" value is negative
 - Information from the header is used to determine when a new line starts

Bitmap header

	0x0_0x1	0x2 ₀ x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf	
0×0000	Туре	Si	Size			Reserved			Offset				Header size		
0x0010	Header size	Wi	dth			Hei	ght		Pla	nes	Bits	√pix C	ompres	sion type	
0x0020	Compression typ	e Imagesize				X-resolution			Y-resolution				# of colors		
0x0030	# of colors	lmporta	nt colors												

Byte order (Endianness)

- When more than one byte is needed to represent an integer, it is important to know how the computer architecture stores the bytes
- Little-endian
 - The least significant byte is stored first
 - If we want to store 0x01020304, then the on-disk (or in-memory) bytes look like this: 04 03 02 01
- Big-endian
 - The most significant byte is stored first
 - If we want to store 0x01020304, then the on-disk (or in-memory) bytes look like this: 01 02 03 04