
 

Software Engineering 

An Overview

Prof. David Bernstein 
James Madison University

Computer Science Department

bernstdh@jmu.edu

http://www.jmu.edu/
javascript:loadSummary()


What is Software?
 

To the Hardware:

A collection of instructions to be executed by a computer/processor

To the Developer:

A collection of human-readable statements (in a language) that can be converted
to a collection of instructions to be executed by a computer/processor



Kinds of Software Products
 

Bespoke:

Software products that are developed (usually under contract) for a specific
user/customer

Generic:

Software products that are developed (usually speculatively) and then sold in a
market (either a mass market or a niche market)



Software Engineering
 

Defined:

The application of (scientific) theories, methods and tools to the specification,
design, creation, verification/validation, deployment, operation, and maintenance
of software products

Scope:

From specification to maintenance

Involves theories/methods from psychology, mathematics/statistics, computer
science, and management (of people and resources)

Consists of science and art



Software Engineering vs. Computer Science/Engineering
 

Computer Engineering:

The application of theories (often from physics) to the creation of computational
devices

Usually thought of as a subset of electrical and electronic engineering

Computer Science:

The theories and methods that underly computation and the use of computational
devices



Software Processes
 

Definition:

A set of activities/tasks (and corresponding inputs and outputs) that results in the
specification, development, validation, and/or evolution of a software product

Common Activities:

Project planning, product design, engineering design, implementation,
deployment, support/maintenance

An Observation:

Many of these activities involve "problem solving" and/or "design"



Generic Problem Solving/Design Activities
 

The Parts of the Process:

Identification of goals, objectives and constraints

Generation of alternatives

Evaluation of alternatives

Selection of an alternative

Categorizing the Parts of the Process:

Analysis (to understand the problem)

Resolution (to solve the problem)



Software Design
 

Software Design:

Software design is the process of specifying the nature and composition of a
software system that satisfies client needs and desires, subject to constraints.
(Fox, 2006)

Software Product Design:

Software product design is the process of specifying software product features,
capabilities and interfaces to satisfy client needs and desires. (Fox, 2006)

The analysis portion involves the creation of a needs list while the resolution
portion involves the creation of a requirements specification

Software Engineering Design:

Software engineering design is the process of specifying programs and sub-
systems, and their constituent parts and workings, to meet software product
specifications. (Fox, 2006)





The Waterfall Process
 



The Scrum Process
 

Sprints:

Fixed duration development cycles (usually 1-4 weeks) that end on a specific date
(whether the work has been completed or not)

Scrum Roles:

Product Owner (responsible for achieving maximum business value)

Team (multi-functional; 5-10 people)

ScrumMaster (helps the Team be successful; protects the Team)

Process:

Start of the Sprint: There is a Sprint Planning Meeting at which the Team selects
items from a prioritized list of requirements/features and commits to completing
them



Each Day: Members of the Team report (at a standup meeting of 15 minutes or
less) on progress

End of the Sprint: The Team demonstrates what has been built (in a Sprint
Review) and gets feedback for the next Sprint (in a Sprint Retrospective)



"Heavyweight" vs. "Agile"/"Lean" Methods
 

A Common Categorization:

Heavyweight: Waterfall, Incremental Delivery, Spiral

Agile/Lean: RUP, XP, Scrum, FDD

One View of the Difference:

The different process involve the same activities but vary dramatically in the cycle
times



Becoming a Better Product Designer
 

Needs Elicitation Techniques:

Interviews

Observations

Focus Groups

Document Studies

Competitive Product Studies

Prototype Demonstrations (and the resulting feedback)

Requirements Generation/Documentation Techniques:

Brainstorming and classification trees

Atomization, verifiability and uniformity



User Interface Design Techniques

Consistency/Stability ("Principle of Least Astonishment")

Simplicity/Clarity

Familiarity

Availability (key features should be readily available)

Forgiveness/Discoverability



Becoming a Better Engineering Designer
 

Architectural Styles:

A method of characterizing a software product

Design Patterns:

A general, reusable solution to a common problem



Becoming a Better Implementer
 

Tools:

Integrated development environments

Debuggers

Unit testing frameworks

System testing frameworks

Profilers

Coverage analysis tools

Static analysis tools

Idioms:

A means of expressing a recurring construct in a particular programming language


