

The Representaion of Data An Overview

Prof. David Bernstein James Madison University

Computer Science Department

bernstdh@jmu.edu

What Is This?

The Point of the Quiz

Computer Computer

• It could be many things

Bits (i.e., binary values) can be and are used to represent a wide variety of things

• We need contextual information

To interpret a bunch of bits we need to know the representation scheme being used

Why 0/1? ◀ ►

- Electronic/Magnetic Systems:
 - Positive/Negative

On/Off

Clockwise/Counterclockwise

• Mechanical Systems:

Up/Down

Pits/Lands

Hole/Solid

Bump/Flat

An Easy First Example - The Counting Numbers JAMES MADISON UNIVERSI

 \triangleright

Base 10 (Decimal)				Base 2 (Binary)			
	10²	10 ¹	10°	2 ³	2 ²	2 ¹	2°
	100	10	1	8	_4	2	1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	0	2	0	0	1	0
0	0	0	3	0	0	1	1
•				•			
				•			
0	0	1	0	1	0	1	0
0	0	1	1	1	0	1	1
0	0	1	2	1	1	0	0
0	0	1	3	1	1	0	1

An Interesting Question and Answer

• The Question:

How many bits do we need to represent all of the counting numbers less than N?

Compu

• Getting to the Answer:

With B bits, we can represent all of the counting numbers less than 2^B

What About Negative Integers?

Computer

• An Obvious Place to Start:

Since there are two signs, use one bit (e.g., the left-most) to represent the sign

• A Shotcoming of this Approach:

It results in both a +0 and a -0

Going Further 3: Negative Numbers (cont.)

Roll the odometer back

JAMES MADISON UNIVERSIT

Starting Point

Roll the odometer forward

Going Further (☆: Negative Numbers (cont.)

JAMES MADISON UNIVERSIT

(Courtesy of xkcd)

What About Real Numbers?

• Think About Base 10:

The positions to the left of the decimal point are powers of 10 and the positions to the right of the decimal place are powers of 1/10

• An Obvious Place to Start in Binary:

The positions to the left of the decimal point are powers of 2 and the positions to the right of the decimal place are powers of 1/2

Going Further (☆: What About Real Numbers? (cont.)

• Terms:

Sign

Exponent

Mantissa

• Normalization:

One digit left of the decimal

• Example: +1.101101 x 2³

Sign: +

Exponent: 3

Mantissa: 1.101101

Going Further (☆: What About Real Numbers? (cont.)

- IEEE Short Real (Single Precision):
 - 1 bit for the sign
 - 8 bits for the exponent
 - 23 bits for the mantissa
- IEEE Long Real (Double Precision):
 - 1 bit for the sign
 - 11 bits for the exponent
 - 52 bits for the mantissa

What About Characters?

Computer Computer

• An Obvious Place to Start:

Count the number of characters

Determine the number of bits needed

Assign a binary number to each character

• An Example:

There are 26 letters in the alphabet 8 bits can represent 2^5 (i.e., 32) different things Assign 00001 to A, 00010 to B, 00011 to C,, 11010 to Z

What About Characters? (cont.)Motivation

• The ASCII Encoding:

Character <u>!</u>	Decimal 33	Binary 00100001			
A	65	01000001			
В	66	01000010			
С	67	01000011			
а	97	01100001			
b	98	01100010			
С	99	01100011			

• Unicode:

A mapping for every character in every language (including many dead languages)

Compu

What About Other Things?

• Discrete Sets:

We can use the same approach as for characters

• Continuous Sets:

We either have to sample the set (to create a discrete approximation) or describe the elements

What About Colors?

• A Sampling Scheme:

Use the fact that we have red, green and blue cones to think of colors as having a red, green and blue component

Compu

Think of each color as having a discrete number of levels (e.g., $2^8=256$)

A paletteof $2^24=16,777,216$ colors

• A Description Scheme:

Use the wavelength

What About Pictures?

• A Sampling Scheme:

Create a finite grid (called a raster) with equal sized cells (called picture elements or pixels)

Comput

• A Description Scheme:

Use geometric shapes (e.g., points, lines, curves, rectangles, polygons, ellipses)

What About Audio?

• A Sampling Scheme:

Need to use both temporal sampling and amplitude sampling (called quantization)

JAMES MADISON UNIVERS

Compute

• A Description Scheme:

Use something like standard musical notation

What About Programs?

• Getting Started:

Each processor is capable of executing a discrete set of operations

Each operation is given a code

• The Next Step:

Each operation has a discrete number of operands, each of which is represented in binary

• The Final Step:

A program is just a sequence operation codes and operand values

The Quiz Revisited

• What Is This?

• It Could Be Anything!

I could treat it as a number or bunch of numbers

I could treat it as a color or bunch of colors

I could treat it as a audio

I could treat it as a program

...