
SQL Recursion, Window Queries
PG 7.8; 3.5 & 9.21

Dr. Chris Mayfield

Department of Computer Science
James Madison University

Apr 05, 2022



WITH clause

Basic syntax:
WITH R AS <definition of R> <query involving R>

For example:

I Flights(airline, src, dst, departs, arrives)

WITH den_flights AS (

SELECT * FROM Flights

WHERE src = 'DEN'

)

SELECT * FROM den_flights

ORDER BY departs;

Apr 05, 2022 SQL Recursion, Window Queries 2 of 14



Common table expressions

Define temporary tables that exist for one query

I WITH can involve SELECT, INSERT, UPDATE, or DELETE

I Can be attached to SELECT, INSERT, UPDATE, or DELETE

For example:

WITH moved_rows AS (

DELETE FROM products

WHERE "date" >= '2010-10-01'

AND "date" < '2010-11-01'

RETURNING *

)

INSERT INTO products_log

SELECT * FROM moved_rows;

https://www.postgresql.org/docs/11/queries-with.html

Apr 05, 2022 SQL Recursion, Window Queries 3 of 14

https://www.postgresql.org/docs/11/queries-with.html


Famous mathematician

Paul Erdős (1913–1996)

One of the most prolific mathematicians
of the 20th century

I More than 1500 articles

I Over 500 collaborators

I The Oddball’s Oddball

Tribute: Erdős number

https://en.wikipedia.org/wiki/Paul Erd%C5%91s

Apr 05, 2022 SQL Recursion, Window Queries 4 of 14

https://en.wikipedia.org/wiki/Paul_Erd%C5%91s


Erdős numbers

WITH e1 AS (

-- Erdos number is 1

SELECT DISTINCT b.author

FROM auth AS a

-- same paper, but different author

JOIN auth AS b ON a.dblp_key = b.dblp_key

AND a.author != b.author

WHERE a.author = 'Paul Erdös'

)

-- Erdos number is 2

SELECT DISTINCT d.author

FROM e1

-- first get all papers of e1 authors

JOIN auth AS c ON e1.author = c.author

-- same paper, but different author

JOIN auth AS d ON c.dblp_key = d.dblp_key

AND c.author != d.author

-- excluding e0 and e1

WHERE d.author != 'Paul Erdös'

AND d.author NOT IN (SELECT author FROM e1);

Apr 05, 2022 SQL Recursion, Window Queries 5 of 14



Recursive queries using CTE’s



Recursive relations in SQL

RECURSIVE modifer allows WITH queries to refer to their own output

-- Result is 5050

WITH RECURSIVE t(n) AS (

VALUES (1)

UNION ALL

SELECT n+1 FROM t WHERE n < 100

)

SELECT sum(n) FROM t;

General form:

1. Non-recursive term

2. UNION or UNION ALL

3. Recursive term

Apr 05, 2022 SQL Recursion, Window Queries 7 of 14



Recursive query evaluation

1. Evaluate the non-recursive term
I Include all rows in the query result
I If UNION, eliminate duplicate rows
I Also place them in a working table

2. While the working table is not empty
I Evaluate the recursive term using working table
I If UNION, eliminate duplicates of any previous row
I Add rows to result and create intermediate table
I Replace working table with the intermediate table

Strictly speaking, this process is iteration not recursion!

Apr 05, 2022 SQL Recursion, Window Queries 8 of 14



Recursive flight example

-- transitive closure of flights

WITH RECURSIVE Reaches(src, dst) AS

SELECT src, dst

FROM Flights

UNION

SELECT R1.src, R2.dst

FROM Reaches AS R1, Reaches AS R2

WHERE R1.dst = R2.src

)

-- all cities reachable from Denver

SELECT dst FROM Reaches

WHERE src = 'DEN';

More complex example using depth and path:
https://www.postgresql.org/docs/11/queries-with.html

Apr 05, 2022 SQL Recursion, Window Queries 9 of 14

https://www.postgresql.org/docs/11/queries-with.html


More Advanced SQL

Analytical queries and Window functions



Analytical queries

Calculate a running total

I Show the cumulative salary within a department row by row

Find percentages within a group

I Show the percentage of the total salary paid to an individual

Compute a moving average

I Average the current row’s value with the previous N rows

Perform ranking queries

I Show the relative rank of each salary within a department

Top-N queries

I Find the top n sales by region

Apr 05, 2022 SQL Recursion, Window Queries 11 of 14



Window functions

Perform a calculation across related rows

I Partition: which rows are related

I Order: how to sort each partition

Example:

-- sort by salary in each dept

SELECT depname, empno, salary,

rank() OVER (PARTITION BY depname ORDER BY salary DESC)

FROM empsalary;

Window functions only allowed in SELECT and ORDER BY clauses

I Defined over output of FROM, WHERE, GROUP BY, and HAVING

Apr 05, 2022 SQL Recursion, Window Queries 12 of 14



Example OVER clauses

-- average salary in each dept

SELECT depname, empno, salary,

avg(salary) OVER (PARTITION BY depname)

FROM empsalary;

-- running total of salaries

SELECT depname, empno, salary,

sum(salary) OVER (ORDER BY salary)

FROM empsalary;

-- GROUP BY without grouping

SELECT depname, empno, salary,

sum(salary) OVER ()

FROM empsalary;

https://www.postgresql.org/docs/11/tutorial-window.html

Apr 05, 2022 SQL Recursion, Window Queries 13 of 14

https://www.postgresql.org/docs/11/tutorial-window.html


Other window functions

SELECT depname, empno, salary,

sum(salary) OVER w, -- and other aggregate functions

row_number() OVER w, -- from 1 to number of rows in w

rank() OVER w, -- rows with same value get same rank

FROM empsalary

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

I There are many more options for OVER clauses
I https://www.postgresql.org/docs/11/sql-expressions.html#SYNTAX-

WINDOW-FUNCTIONS

I List of general-purpose window functions
I https://www.postgresql.org/docs/11/functions-window.html

Apr 05, 2022 SQL Recursion, Window Queries 14 of 14

https://www.postgresql.org/docs/11/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS
https://www.postgresql.org/docs/11/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS
https://www.postgresql.org/docs/11/functions-window.html

