
Java Database Connectivity (JDBC)
PDBM 15.3.4

Dr. Chris Mayfield

Department of Computer Science
James Madison University

Mar 24, 2022



Introduction to JDBC

JDBC = Java Database Connectivity

1. Connect to the database → java.sql.Connection

2. Send queries and updates → java.sql.Statement

3. Retrieve/process results → java.sql.ResultSet

import java.sql.*

PostgreSQL’s JDBC driver

I Download jar file from https://jdbc.postgresql.org/

I See https://jdbc.postgresql.org/documentation/head/

Mar 24, 2022 Java Database Connectivity (JDBC) 2 of 8

https://jdbc.postgresql.org/
https://jdbc.postgresql.org/documentation/head/


Load the driver

Initialization during application startup:

Class.forName("org.postgresql.Driver");

ClassNotFoundException if driver not available

I Make sure the jar is in your class path

Don’t need to do this before every connection!

I Usually part of application startup code

Mar 24, 2022 Java Database Connectivity (JDBC) 3 of 8



Connect to the DB

Connection db = DriverManager.getConnection(

url , username , password );

URL format is specific to the DBMS

I jdbc:postgresql:database

I jdbc:postgresql://host/database

I jdbc:postgresql://host:port/database

Internally, uses same library as psql and pgAdmin

Mar 24, 2022 Java Database Connectivity (JDBC) 4 of 8



Execute a statement

String sql = "SELECT * FROM mytab WHERE foo = 500";

Statement st = db.createStatement ();

ResultSet rs = st.executeQuery(sql);

while (rs.next ()) {

System.out.print("Column 1 returned ");

System.out.println(rs.getString (1));

}

rs.close ();

st.close ();

ResultSet can also do getInt(i), getFloat(i), . . .

I Note that column indexes start at 1!

For non-queries, use rs.executeUpdate(sql)

Mar 24, 2022 Java Database Connectivity (JDBC) 5 of 8



Better yet, a prepared statement

int foovalue = 500;

String sql = "SELECT * FROM mytab WHERE foo = ?";

PreparedStatement st = db.prepareStatement(sql);

st.setInt(1, foovalue );

ResultSet rs = st.executeQuery ();

while (rs.next ()) {

System.out.print("Column 1 returned ");

System.out.println(rs.getString (1));

}

rs.close ();

st.close ();

The ‘?’ syntax provides additional type safety

I String arguments are automatically escaped
I Helps prevent SQL injection attacks https://xkcd.com/327/

Mar 24, 2022 Java Database Connectivity (JDBC) 6 of 8

https://xkcd.com/327/


Details about statements

Use a single Statement instance as many times as you want

I However, only one ResultSet can exist per Statement or
PreparedStatement at a given time

I If you need to run a query while processing a ResultSet,
simply create and use another Statement

If you are using threads, and several are using the database, you
must use a separate Statement for each thread.

When you are done using the Statement or PreparedStatement
you should close it.

Mar 24, 2022 Java Database Connectivity (JDBC) 7 of 8



Details about result sets

Before reading any values, you must call next()

I Returns true if there is a result

I More importantly, prepares the row for processing

You should close a ResultSet once you have finished

I If you make another query with the RS’s Statement . . .

I . . . then the ResultSet instance is closed automatically

Now you try it!

I Create a Java application that outputs movie titles

Mar 24, 2022 Java Database Connectivity (JDBC) 8 of 8


