
Checking Understanding

• Take a look at the classes in the workbook!

• You have Boat, SailBoat, MotorBoat, and Sinkable
• Plus some additional "helper" classes

• Question 1: Draw the UML of the code in the attachment
• You do not need to include the attributes/methods

Checking Understanding Solution

Question 1: Draw the UML of the code in the attachment

Checking Understanding (cont.)

Checking Understanding (cont.)

Checking Understanding (cont.)

Checking Understanding (cont.)

Checking Understanding (cont.)

Challenge

• Given these four methods in a class called BoatUtils:
public static void showBoat(Boat boat) {

System.out.println("BOAT: " + boat);

}

public static void showBoat(SailBoat boat) {

System.out.println("SAILBOAT: " + boat);

}

public static void showBoat(MotorBoat boat) {

System.out.println("MOTORBOAT: " + boat);

}

public static void showBoat(Sinkable boat) {

System.out.println("SINK: " + boat);

}

Take a look! They have the
same name, but different

parameter lists

That's perfectly fine!
This is called

"method overloading"

Challenge (cont.)

Challenge (cont.)

Challenge (cont.)

Challenge (cont.)

Challenge Code Output

• Discuss your answers with a
partner and try to make sense
of what's happening here!

SailBoat sb = new SailBoat("DynamicWind", 123);
 BoatUtils.showBoat(sb);

 SAILBOAT: Sailboat: DynamicWind 123

 MotorBoat mb = new MotorBoat("ChaseMe", 5);
 BoatUtils.showBoat(mb);

 MOTORBOAT: Boat: ChaseMe x: 0 y: 0 Count: 5

 Boat b1 = mb;
 BoatUtils.showBoat(b1);

 BOAT: Boat: ChaseMe x: 0 y: 0 Count: 5

 Boat b2 = sb;
 BoatUtils.showBoat(b2);

 BOAT: Sailboat: DynamicWind 123

public static void showBoat(Boat boat) {
 System.out.println("BOAT: " + boat);
 }

 public static void showBoat(SailBoat boat) {
 System.out.println("SAILBOAT: " + boat);
 }

 public static void showBoat(MotorBoat boat) {
 System.out.println("MOTORBOAT: " + boat);
 }

 public static void showBoat(Sinkable boat) {
 System.out.println("SINK: " + boat);
 }

BTW: This will implicitly call boat.toString()

Static vs. Dynamic Binding

Static binding is a compile-time determination:
• Based on variable declaration

• Only methods present in the variable type can be called
• Example: Picture pic = new SlideShow(…);

 pic.toString(); // compiles

 pic.getCurrentPic(); // doesn't compile!

• Assignment can only be done to variable higher up in hierarchy
• Example: SlideShow s = pic; // compiles

• Variable type determines method when passed as a parameter
• Example: two overloaded methods show(Picture p) and show(SlideShow s)

 show(pic); // runs show(Picture p) – pic has type Picture

Static vs. Dynamic Binding (cont.)

Dynamic binding is a runtime determination:
• Based on object/instance type

• (The class/type on the right, after the keyword new)

• Determines what actually gets run when called
• Example: Picture pic = new SlideShow(…);

 pic.toString(); // runs toString() defined in SlideShow

// only runs .toString() in superclass if not overridden in SlideShow

• The type of the instance applies to overridden methods
• Static binding applies to overloaded methods

So What's Happening Here?

• Take a look at the output. There's two parts to this puzzle!

SailBoat sb = new SailBoat("DynamicWind", 123);
Boat b2 = sb;
BoatUtils.showBoat(b2);

Output:

 BOAT: Sailboat: DynamicWind 123

public static void showBoat(Boat boat) {
 System.out.println("BOAT: " + boat);
 }

 public static void showBoat(SailBoat boat) {
 System.out.println("SAILBOAT: " + boat);
 }

 public static void showBoat(MotorBoat boat) {
 System.out.println("MOTORBOAT: " + boat);
 }

 public static void showBoat(Sinkable boat) {
 System.out.println("SINK: " + boat);
 }

1) showBoat(Boat boat) is called, because
the type of the b2 variable is Boat

1) 2)

2) But when we call .toString(), we "go to" the
object referenced by b2 (which is a SailBoat)
and ask it to give us a String

Test Your Knowledge

Test Your Knowledge

	Slide 1: Checking Understanding
	Slide 2: Checking Understanding Solution
	Slide 3: Checking Understanding (cont.)
	Slide 4: Checking Understanding (cont.)
	Slide 5: Checking Understanding (cont.)
	Slide 6: Checking Understanding (cont.)
	Slide 7: Checking Understanding (cont.)
	Slide 8: Challenge
	Slide 9: Challenge (cont.)
	Slide 10: Challenge (cont.)
	Slide 11: Challenge (cont.)
	Slide 12: Challenge (cont.)
	Slide 13: Challenge Code Output
	Slide 14: Static vs. Dynamic Binding
	Slide 15: Static vs. Dynamic Binding (cont.)
	Slide 16: So What's Happening Here?
	Slide 17: Test Your Knowledge
	Slide 18: Test Your Knowledge

