Checking Understanding

* Take a look at the classes in the workbook!

* You have Boat, SailBoat, MotorBoat, and Sinkable
« Plus some additional "helper" classes

* Question 1: Draw the UML of the code in the attachment
* You do not need to include the attributes/methods

Checking Understanding Solution

Question 1: Draw the UML of the code in the attachment

«interface-
Sinkable

.-'{III'L

«abstract=
Boat

< ™

!

['|
|

MotorBoat SailBoat

Checking Understanding (cont.)

(Review 1) What kind of error would be produced? 70

Compile-time error

// Given:

Boat[] boats = new Boat[3];

Sinkable sink = new SailBoat("TrueSails", 2);
new MotorBoat(“TrailBlazer”,

new SailBoat(EasyGoing”, 1); Runtime error

boats[@]

boats[1]

// Consider the following code:
poats.move();

No error

Checking Understanding (cont.)

(Review 2) What kind of error would be produced?

// Given:
Boat[] boats = new Boat[3];

Sinkable sink = new SailBoat("TrueSails", 2);

boats[@] = new MotorBoat("TrailBlazer", 3);
boats[1] = new SailBoat("EasyGoing", 1);

// Consider the following code:
boats[@].move();

Compile-time error

Runtime error

No error

70

Checking Understanding (cont.)

(Review 3) What kind of error would be produced?

// Given:

Boat[] boats = new Boat[3];

Sinkable sink = new SailBoat("TrueSails", 2);
boats[@] = new MotorBoat("TrailBlazer", 3);
boats[1] = new SailBoat("EasyGoing", 1);

// Consider the following code:
((SailBoat) boats[©]).sail();

Compile-time error

Runtime error

No error

Checking Understanding (cont.)

(Review 4) What kind of error would be produced? 20

Compile-time error

// Given:

Boat[] boats = new Boat[3];

Sinkable sink = new SailBoat("TrueSails", 2);

boats[©] new MotorBoat("TrailBlazer", 3);

boats[1] = new SailBoat("EasyGoing", 1); Runtime error

// Consider the following code:
boats[2] = new Boat("JohnB");

No error

Checking Understanding (cont.)

(Review 5) What would this code output? 0

Motorboat: EasyGoing x:0 y:0 Count: 3

// Given:
Boat[] boats = new Boat[3]; Boat: EasyGoing x: 0 y: 0 Count: 3
Sinkable sink = new SailBoat("TrueSails", 2);
boats[@] = new MotorBoat("TrailBlazer", 3);
boats[1] = new SailBoat("EasyGoing", 1);)
Boat: EasyGoing 1
// Consider the following code:
Boat b = boats[1];
System.out.println(b.toString()); Sailboat: EasyGoing x: 0y: 0 Count: 3

Sailboat: EasyGoing 1

Challenge

* Given these four methods in a class called BoatUtils:

public static void showBoat(Boat boat) {
System.out.println("BOAT: " + boat);

}
Take a look! They have the

public static void showBoat(SailBoat boat) { Same name, l;)ut/q;fferent
arameter lists
System.out.println("SAILBOAT: " + boat); P

}

public static void showBoat(MotorBoat boat) {

System.out.println("MOTORBOAT: " + boat); 'ThaﬁifﬁﬁfeCHyJﬁne!
is is calle

"method overloading"

}

public static void showBoat(Sinkable boat) {
System.out.println("SINK: " + boat);

Challenge (cont.)

(Challenge 1) Which method would be called by this code?

-

SailBoat sb = new SailBoat("DynamicWind", 123);
BoatUtils.showBoat(sb);

showBoat(Boat boat)

showBoat(SailBoat boat)

showBoat(MotorBoat boat)

showBoat(Sinkable boat)

70

Challenge (cont.)

(Challenge 2) Which method would be called by this code?

MotorBoat mb = new MotorBoat("ChaseMe"”, 5);
BoatUtils.showBoat(mb);

showBoat(Boat boat)

showBoat(SailBoat boat)

showBoat(MotorBoat boat)

showBoat(Sinkable boat)

Challenge (cont.)

(Challenge 3) Which method would be called by this code?

showBoat(Boat boat)

showBoat(SailBoat boat)
MotorBoat mb = new MotorBoat("ChaseMe", 5);

Boat bl = mb;
BoatUtils.showBoat(bl);

showBoat(MotorBoat boat)

showBoat(Sinkable boat)

70

Challenge (cont.)

(Challenge 4) Which method would be called by this code?

showBoat(Boat boat)

showBoat(SailBoat boat)

-

SailBoat sb = new SailBoat("DynamicWind", 123);
Boat b2 = sb;
BoatUtils.showBoat(b2);

showBoat(MotorBoat boat)

showBoat(Sinkable boat)

70

Challenge Code Output

public static void showBoat(Boat boat) {
System.out.println("BOAT: " + boat);

} BTW: This will implicitly call boat.toString()

public static void showBoat(SailBoat boat) {
System.out.println("SAILBOAT: " + boat);

}

public static void showBoat(MotorBoat boat) {
System.out.println("MOTORBOAT: " + boat);

}

public static void showBoat(Sinkable boat) {
System.out.println("SINK: " + boat);

}

 Discuss your answers with a
partner and try to make sense
of what's happening here!

SailBoat sb = new SailBoat("DynamicWind", 123);
BoatUtils.showBoat(sb);

SAILBOAT: Sailboat: DynamicWind 123

MotorBoat mb = new MotorBoat("ChaseMe", 5);
BoatUtils.showBoat(mb);

MOTORBOAT: Boat: ChaseMe x: © y: O Count: 5

Boat bl = mb;
BoatUtils.showBoat(bl);

BOAT: Boat: ChaseMe x: @ y: O Count: 5

Boat b2 = sb;
BoatUtils.showBoat(b2);

BOAT: Sailboat: DynamicWind 123

Static vs. Dynamic Binding

Static binding is a compile-time determination:
- Based on variable declaration

« Only methods present in the variable type can be called
- Example: Picture pic = new SlideShow(..);
pic.toString(); // compiles
pic.getCurrentPic(); // doesn't compile!

« Assignment can only be done to variable higher up in hierarchy
- Example: SlideShow s = pic; // compiles

* Variable type determines method when passed as a parameter
« Example: two overloaded methods show(Picture p) and show(SlideShow s)

show(pic); // runs show(Picture p) - pic has type Picture

Static vs. Dynamic Binding (cont.)

Dynamic binding is a runtime determination:

- Based on object/instance type
 (The class/type on the right, after the keyword new)

« Determines what actually gets run when called
- Example: Picture pic = new SlideShow(..);
pic.toString(); // runs toString() defined in SlideShow
// only runs .toString() in superclass if not overridden in SlideShow

« The type of the instance applies to overridden methods
« Static binding applies to overloaded methods

So What's Happening Here?

 Take a look at the output. There's two parts to this puzzle!

public static void showBoat(Boat boat) {
System.out.println("BOAT: " + boat);
} | S | S—
1) 2)
public static void showBoat(SailBoat boat) {
System.out.println("SAILBOAT: " + boat);

}

public static void showBoat(MotorBoat boat) {
System.out.println("MOTORBOAT: " + boat);

}

public static void showBoat(Sinkable boat) {
System.out.println("SINK: " + boat);

}

SailBoat sb = new SailBoat("DynamicWind", 123);
Boat b2 = sb;
BoatUtils.showBoat(b2);

Output:

1) showBoat(Boat boat) is called, because
the type of the b2 variable is Boat

—

BOAT: Sailboat: DynamicWind 123
\ l
|
2) But when we call .toString(), we "go to" the
object referenced by b2 (which is a SailBoat)
and ask it to give us a String

Test Your Knowledge

(Test 1) Which method would be called by this code? 70

showBoat(Boat boat)

showBoat(SailBoat boat)
Sinkable sk = new MotorBoat("ZippyDriver", 200);
BoatUtils.showBoat(sk);

showBoat(MotorBoat boat)

showBoat(Sinkable boat)

Test Your Knowledge

(Test 2) What would this code output? 70

SAILBOAT: Sailboat: CravinSpeed 200

public static void showBoat(Boat boat) A
System.out.println("BOAT: " + boat);

public static void showBoat(SailBoat boat) { SAILBOAT: Boat: CravinSpeed x: 0y: 0 Count: 1

System.out.println("SAILBOAT: " + boat);

public static void main(String[] args) {
f;.f; 'Lnjhat would this Code Output? BOAT: Sailboat: CraVlnSPEEd 200
Boat bt = new SailBoat("CravinSpeed", 200);

BoatUtils.showBoat(bt);

BOAT: Boat: CravinSpeed x: 0 y: 0 Count: 1

	Slide 1: Checking Understanding
	Slide 2: Checking Understanding Solution
	Slide 3: Checking Understanding (cont.)
	Slide 4: Checking Understanding (cont.)
	Slide 5: Checking Understanding (cont.)
	Slide 6: Checking Understanding (cont.)
	Slide 7: Checking Understanding (cont.)
	Slide 8: Challenge
	Slide 9: Challenge (cont.)
	Slide 10: Challenge (cont.)
	Slide 11: Challenge (cont.)
	Slide 12: Challenge (cont.)
	Slide 13: Challenge Code Output
	Slide 14: Static vs. Dynamic Binding
	Slide 15: Static vs. Dynamic Binding (cont.)
	Slide 16: So What's Happening Here?
	Slide 17: Test Your Knowledge
	Slide 18: Test Your Knowledge

