About CS 101, Fall 2019

Chris Mayfield, Sharon Simmons, Michael Stewart Department of Computer Science James Madison University

(click here for video)

Course design

survey course

n.

An academic course consisting of an overview of a broad topic or field of knowledge.

(American Heritage Dictionary)

What this means:

- You will learn about many topics
- Focus on breadth, not on depth
- See the big picture of what is CS

Example sub-fields

How to think like a computer scientist

Example Learning Objective

Use abstraction and decomposition when reasoning about complex systems and problems.

Lab01 example

"F1" is an abstract tool

Lab02 example

"Half adder" is an abstract tool

Lab03 example

"CPU instructions" are abstract tools

Essence of CS 101

The point is NOT:

- Become an expert at Light-Bot programming
- Be able to understand/design complex circuits
- Program a computer in machine language

The point is:

- Learn how to think like a computer scientist
- Sample what you will learn in future courses
- Develop new computing skills (e.g., Python)

Textbook

Computer Science: An Overview Brookshear and Brylow, 12th edition

http://www.pearsonhighered.com/brookshear

Course outline

Part 1: Hardware and Systems

- 1. Introduction
- 2. Data Storage
- 3. Program Execution
- 4. Operating Systems
- 5. Computer Networking
- 6. Information Security
- 7. Mid Project: Explore

Part 2: Software and Data

- 8. Algorithms and Python
- 9. Programming Languages
- 10. Software Engineering
- 11. Data Structures
- 12. Database Systems
- 13. Artificial Intelligence
- 14. Final Project: Create

Finch robots!

Big Ideas of Computer Science

Source: http://apcsprinciples.org/

(see also Section 0.4 of the book)

Big Idea 1: Creativity

Computing is a creative activity.

Big Idea 2: Abstraction

Abstraction reduces information and detail to facilitate focus on relevant concepts.

Big Idea 3: Data and Information

http://www.ibm.com/big-data

Data and information facilitate the creation of knowledge.

Big Idea 4: Algorithms

Algorithms are used to develop and express solutions to computational problems.

Big Idea 5: Programming

```
Python 2.7.6: dance.py - /home/mayfiecs... - + ×

Elle Edit Format Run Options Windows Help

***Let's make the Finch robot dance!***

from finch import Finch

from time import sleep

finch = Finch()

#### CHANGE CODE BELOW THIS LINE #####

finch.led(0, 255, 0)

finch.wheels(0.75, 0.75)

sleep(1.5)

finch.led(0, 0, 255)

finch.heels(-0.75, -0.75)

sleep(1.5)

finch.halt()

[n: 19(Ocio 0]
```

Programming enables problem solving, human expression, and creation of knowledge.

Big Idea 6: The Internet

The Internet pervades modern computing.

by Wilgengebroed on Flickr

Big Idea 7: Global Impact

Source: smallbiztrends.com

Computing has global impact.