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ABSTRACT
Progress indicators are a well-known and widely-implemented
tool in computing and provide valuable feedback to end users
about a task’s completion percentage, as well as the time re-
maining. Building accurate progress indicators for database
queries is difficult. There have been some recent efforts
aimed at approximating the progress of queries. We imple-
mented and compared two such methods to determine which
method works best in various scenarios. We discovered that
Luo works better when blocking operations dominate the
execution time, while Chaudhuri works better when input
nodes such as scans dominate the execution time. In this
paper, we describe the two methods, present the results of
our comparison, and propose several ideas for combining the
two algorithms for better progress estimation.

1. INTRODUCTION
The goal of our research project was to answer the

following question: How accurately can we measure the
progress of an SQL query? The project is motivated by
a complaint from former University of Maryland grad-
uate student, Rob Sherwood. Sherwood’s work [10]
required processing-intensive SQL queries. Under the
pressure of a paper submission date, Sherwood was un-
able to monitor the progress of his queries to see if they
would be completed before the submission date, or even
before the end of the millennium (some of his queries
were theoretically that large). Sherwood observed that
any sort of progress indicator would be a great help in
ensuring the timely progress of his research.

Progress indicators are a well-known concept in com-
puting, both in the form of progress bars and simple
labels identifying the percentage completed or time re-
maining. They are used to track the progress of file op-
erations, data processing routines, searches, and many
other processes of various magnitudes. Researchers in
the HCI community have studied progress indicators [9]
and concluded that users prefer to know the progress of
an operation.

A progress indicator can help a database user in many
ways. Intuitively, a progress estimate can aid the user

by giving them insight into the viability of their task.
If a task is taking much longer than the user expected,
that knowledge can allow them to cancel the task and
restart it with improved parameters, thus saving time.
In addition, the knowledge of how much time is remain-
ing can help by allowing the user to be ready and start
the next task promptly. Even a rough estimate of a
task’s duration can enable an automatic scheduler to
build efficient job queues. Finally, the user is saved the
frustration of not knowing how long they will need to
wait, and they have assurance that the system is still
processing and has not stalled.

However, building accurate progress indicators for
database queries turns out to be a harder problem than
one might originally expect. The problem reduces to
same one that query optimizers face: obtaining an ac-
curate estimate of the number of fixed-cost operations
required by a specific query. There is a large body of
research devoted to improving cost estimates specifi-
cally for query optimizers, but the suggested improve-
ments have been largely internal to the database sys-
tem. Lately, several authors have made efforts to im-
prove progress estimates.

Following a survey of the query progress indicator
literature, we identified two solutions to this problem:

1. Estimate the progress of all blocking operations in
a query (Luo) [5, 6, 7].

2. Estimate the progress of all scan operators in a
query (Chaudhuri) [4, 3].

To date, the methods have not been compared on
the same database system using the same benchmarks
with the same measures of accuracy. We set out to
put these algorithms to the test in the same controlled
environment in order to more rigorously compare their
accuracy.

Our hypothesis was that the methods provide bene-
fit for a mutually exclusive set of query types and in-
puts. We expect Luo to be accurate on queries where
the processing time is spent doing blocking operations.
Chaudhuri should be accurate on queries that involve
more scanning of input data.
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To test our hypothesis we:

• Reimplemented the two progress indicators in Post-
greSQL (§4).

• Measured their performance on several queries, in-
cluding some from a standard benchmark (§5).

• Compared the results using the same measures of
accuracy (§5.6).

2. BACKGROUND

2.1 Problem Statement
A SQL progress indicator must perform the follow-

ing tasks: 1) it must track the percentage of a query
completed, and 2) it must estimate remaining execution
time. An accurate progress indicator should have the
following qualities: 1) it should be continuously revised
to reflect rate and environment changes, 2) it should
have acceptable pacing such that the progress updates
are smooth but not too CPU-intensive, and 3) it should
add minimal overhead to the query processing.

A trivial approach might measure progress as the
number of steps completed of the number of total steps
in query plan, but this would be too coarse for many
queries, providing too little feedback during a lengthy
step. An alternate approach might use the query opti-
mizer’s cost estimate as the upper bound on execution
time and measure progress as elapsed time divided by
total time. However, this would be inaccurate because
of error in the cost estimation and system load variance.

2.2 Measuring query progress with pipelined
segments

The Luo et al. approach [5] partitions a query plan
into pipelined segments (where blocking operators mark
the beginning of a downstream segment). It measures
progress as the actual output of all segments in the
query, divided by the estimated output. It seeds the
predictions with the optimizer’s estimates for each seg-
ment’s output size, then as the query progresses, it con-
tinuously refines the estimated output size using linear
interpolation driven by the input progress.

There are two cases for estimating the input size of
a segment. Either the segment is an “upper-level seg-
ment,” which means that the size of the input depends
on the results of upstream operators, or the segment is
a “base segment,” which means that the input comes
directly from an on-disk relation. In the former case,
the optimizer’s size estimates are used until the seg-
ment begins to execute, at which point the exact size
as returned by the upstream operator can be used. In
the latter case, the input size can be determined from
the relation’s estimated cardinality (from the cost esti-
mator) multiplied by the average tuple size, which are
continuously refined and updated during the input scan.

Luo’s initial paper states that time is the unit of mea-
surement most likely to be useful to end users, although
for the purpose of internal calculations it is helpful to
describe costs in terms of another metric. The authors
use a purposefully vague U unit and mention that I/O
cycles and CPU cycles are both reasonable units. For
their purposes, they define one U to be one page of
bytes processed. Using the input size estimates, they
calculate an overall estimate (in U) for the entire query.

At all times, the sizes and U measurements for up-
stream operators are known exactly, and the estimates
for downstream operators depend on the results for the
current segment, so the authors focus on refining es-
timates related to the current segment. To do this,
the authors introduce the concept of dominant inputs,
which are generally the largest input relations.

In their second paper [6], Luo et al. extend their pre-
vious work in two general ways: 1) they improve the ac-
curacy of previous estimates and 2) they add new func-
tionality. They compare their work at a high level with
that of Chaudhuri [3]. They say that Chaudhuri’s tech-
nique establishes bounds on the work estimates rather
than using linear interpolation, and Chaudhuri’s tech-
nique does not provide time estimates.

Luo et al. also describe five “patterns” of segments
and claim that their previous work is sufficient to ac-
curately estimate the time remaining for the first three
patterns but not the latter two: 1) multi-stage operators
and 2) complex operators that require re-evaluation for
each input tuple. The new contributions in this paper
are supposed to address these two patterns.

In this second paper, the authors claim to improve
on their previous work by doing the following:

• Redefining “segment” at a finer level of granular-
ity. Segments are now split at joins so that mul-
tiple joins are no longer included in the same seg-
ment.

• Allowing for independent estimation of work unit
processing speed in each segment (previously, work
speed was assumed to be constant in future seg-
ments).

• Developing special handling for sort, union, inter-
section, and difference operators, as well as nested
queries that have not been rewritten.

As in the first paper, the authors include an evalua-
tion of their implementation in PostgreSQL.

In their third paper [7], Luo et al. extend their pre-
vious work to simultaneously incorporate time and cost
estimates from multiple queries. In this paper, the au-
thors claim that examining multiple queries can im-
prove the progress estimates for all queries. This con-
sists mainly of estimating how the completion of shorter
queries will speed up the finishing times of longer queries.
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Evaluation experiments, and the authors claim the multi-
query techniques have “significant advantages” over single-
query techniques.

2.3 Measuring query progress with driver op-
erators

Chaudhuri et al. [4] point out that it is much eas-
ier to estimate the cardinalities of scans (which they
call “driver” operators) than of other operators such
as joins, and claim that they can improve “accuracy”
(although it’s not clear what they compare it to) by
monitoring progress of these driver operators. The au-
thors also propose a method of estimating the cardinali-
ties of operators during query execution by establishing
bounds for the output size.

They develop a concept that they call “pipelines”
that is very similar to Luo’s “segments.” The general
idea is: base the overall estimate mainly on the progress
of driver operators, which can be known far more ac-
curately than the other operators, using constantly re-
evaluated upper and lower bounds to refine the progress
estimates for the rest of the query.

Finally, they present an implementation of their al-
gorithm inside Microsoft SQL Server, and evaluate it
using the TPC-H benchmark using a single machine.
They report a mean estimation error of 10%. For fu-
ture work, the authors suggest improving handling of
runtime load variations, reporting progress at a finer
level of granularity, and adding actual time estimates.

In their second paper [3], Chaudhuri et al. claim to
show that in the worse case, it is not possible to do
“much better” than to simply say that the progress lies
somewhere between 0% and 100%. However, they also
offer some reassurance that the “good” cases are far
more common than the worst cases. They examine sev-
eral different estimators (including the one from their
previous paper, which they call “dne”) and describe sev-
eral ideas for better results, including a “pmax” estima-
tor and a “safe” estimator. They do not appear to have
implemented these estimators.

2.4 Other techniques
Mishra and Koudas [8] base their work on that of

Chaudhuri et al., although they claim it is equally ap-
plicable to that of Luo et al. They show several figures
suggesting that their techniques improve that of Chaud-
huri, but they don’t provide much analysis.

Their techniques involve some operators, such as joins
and aggregations, visiting and partitioning the entire in-
put set in preprocessing. Mishra and Koudas can then
use this information to more closely estimate the work
remaining for the rest of the operator. When this pre-
processing step is not used, they revert back to the orig-
inal estimator proposed by Chaudhuri.

Finally, they state that in the future, they wish to
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Figure 1: An example query plan. Luo and Chaud share
the definition of segments (dotted and colored regions),
but differ in their focus within a segment. Luo focuses
on blocking operators (hatched), while Chaudhuri fo-
cuses on driver operators (shaded gray).

explore “accuracy-overhead tradeoffs” in estimators as
well as their effect on and potential application to adap-
tive query processing.

3. COMPARISON OF QUERY PROGRESS
ESTIMATORS

We chose to implement and compare Luo [5, 6] and
Chaudhuri’s [4, 3] progress estimate algorithms. In a
later section (§5) we evaluate the accuracy of these es-
timators.

The major difference between the Luo and Chaud-
huri algorithms is their definition of what “drives” the
progress of a query. Chaudhuri defines the “driver” of
a query’s progress as the output of leaf operators in a
query pipeline (a pipeline is a set of query operators
that can run concurrently). In practice, Luo measures
a query’s progress by measuring progress through the
output of blocking operators. Luo also uses Chaudhuri’s
definition of a “driver” to help determine the progress
of a blocking operator, since the output of leaf oper-
ators usually indicates the estimated output size of a
segment. Figure 1 shows an example query plan with
segments, drivers, and blocking operators highlighted.

The algorithms also differ in how they refine the es-
timated units of work that the query must perform. As
a non-blocking operator (e.g. hash join) learns more
about the size of its inputs, Luo uses the cost estima-
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tor to recompute the operator’s output size. Blocking
operators in Luo’s algorithm refine their estimated out-
put size using a linear interpolation that depends on
the completed fraction of a blocking operator’s input.
Chaudhuri defines a lower and upper bound on input
for a given operator, and refines these bounds as the
query is processed.

Many progress estimators not only estimate the per-
cent of the task that is completed, but also speculate
when it will be completed, usually in the form of a “time
remaining” indicator. Luo provides a method for esti-
mating query completion time, but Chaudhuri does not.

To compare the two algorithms, we extended Chaud-
huri, using a simple total average tuple processing rate
to estimate the amount of time remaining for a query.
We expected the work-based calculations of Luo to be
more accurate than Chaudhuri’s more naive estima-
tions. However, we found that for many of the queries
Chaudhuri’s estimate of remaining time was far more
accurate than Luo’s (§5.6). We are curious to see if
Luo’s simple method for computing the time remaining
could be improved by using Chaudhuri’s query com-
pleteness estimates as input, instead of Luo’s.

4. IMPLEMENTATION
The goal of this project was to compare several well-

known progress estimation algorithms on the same plat-
form. We chose to implement the Luo and Chaudhuri
algorithms inside PostgreSQL [1] because it is the most
popular and full-featured open source database avail-
able. At the beginning of the semester we did not have
any experience with the PostgreSQL code base. It took
several weeks to became acquainted with the general
layout of the source code, including the query execu-
tion path and the methods that create a plan. This
section contains some technical notes on our implemen-
tation, and a description of a few of the difficulties we
encountered.

4.1 Luo’s Algorithm
Our implementation of Luo’s algorithm represents

our best interpretation of the progress estimation al-
gorithm in [5]. This required adding the following func-
tionality to the blocking operators:

• tracking the estimated and actual numbers of out-
put tuples,

• tracking the average size of an output tuple, and

• propagating updates of output estimates to pre-
decessors that should recompute their estimated
output (e.g. hash joins).

Our implementation differed from [5] in the following
ways:

• Only hash joins can recompute their estimated
output without linear interpolation.

• The estimated output of a blocking operator is the
maximum of the cost re-estimation and the linear
interpolation.

• Only the first predecessor hash join updates its
output size.

• For aggregate operators, the output size from the
cost estimator is not used. A similar fix was pro-
posed in [6].

• The implementation does not work with subqueries.
This was solved in [6], but we did not have time
to implement this improvement.

4.2 Chaudhuri’s Algorithm
Our implementation of Chaudhuri’s algorithm repre-

sents our best interpretation of the progress estimator
described in [4].

We implemented the pipelines and drivers as described
in the paper by storing two flags for each operator in
the query execution state tree: one to indicate whether
a operator is the root of a pipeline and the other to
indicate whether a operator is a driver operator. We
are also using the “dne” estimator described in the pa-
per by storing K (the number of processed tuples) and
N (the number of total tuples) at each driver operator,
and maintaining upper and lower bounds of potential
output tuples at every operator.

As Chaudhuri describes, we estimated the overall query
percentage as the sum of processed tuples divided by
the sum of total tuples, considering all pipelines. For
instance, if there are two pipelines, one with 50 of 100
tuples processed and the other with 0 of 100 tuples pro-
cessed, the overall percentage complete is 50+0

100+100 =
50
200 = 25%.

We did not implement the spill handling described in
Chaudhuri’s original paper, nor did we implement the
“pmax” or “safe” estimators described in [3].

4.3 Notable implementation hurtles

4.3.1 PostgreSQL is designed to plan a query once
PostgreSQL performs cost estimation on possible query

paths and later copies this information into the plan
structures. To recompute costs (for Luo) we had to pick
out the cost estimation function for hash joins from the
rest of the planning code. We called this routine man-
ually whenever we needed an updated cost estimate.

Also, PostgreSQL does not provide parent pointers
in the plan tree. To update estimates for an upstream
operator, we needed to be able to perform an upward
traversal of the query plan tree. This required us to
add parent pointers to the query plan. We added these
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pointers in the plan state structure because they are
more easily accessible during execution.

4.3.2 Inaccurate cost estimates of filtered scans
The query optimizer arbitrarily computes the output

size for sequential scans with a filter condition. To the
best of our knowledge the optimizer always computes
the output size of a filtered scan as 30% of the input
relation’s size. This simplification may be reasonable
when computing a query plan based on the output size,
but it leaves progress estimators with an inaccurate es-
timate of the progress of a query during a filtered se-
quential scan. Luo’s query Q2 (see appendix) contains
a filtered sequential scan; this causes Luo’s algorithm
to perform poorly on this query.

5. EVALUATION

5.1 Setup
We evaluated the two progress estimate algorithms

with the TPC-R benchmark [2]. This standard test
suite includes over 1 GB of data in raw CSV format
and over 20 queries. Although it is now considered ob-
solete (according to their website), Luo et al. used the
benchmark data to evaluate their progress indicator in
2004, and we believe it is still a decent test for our pur-
poses.

5.1.1 Queries
Along with queries 1, 4, 5, 6, 11, 14, 19, and 21 from

the TPC-R benchmark, we also used queries Q1, Q2 and
Q3 from Luo’s 2004 paper [5], on the TPC-R data set.
Further, we included Q1 and Q2 from Luo’s 2005 paper
[6]. The actual queries are featured in the appendix
document.

5.1.2 Hardware

• CPU: Quad Core Intel Core 2 at 2.5GHz, 3MB
Cache

• Memory: 4GB

• OS: Red Hat Linux 4, kernel version 2.6.9 (32bit)

• Hard drive: 80GB SATA

5.2 Plots
Figure 2 features examples of our query progress and

time remaining graphs. To aid in understanding the
results presented in future sections, we introduce the
pieces of the graph here.

Both types of graphs have a top and bottom portion.
The top portion shows either query progress or time
remaining, and the bottom part indicates when certain
types of operators are executing.

The black line on the top graph shows the estimated
query progress or time remaining over the query ex-
ecution time. The superimposed grey line represents
the “correct” estimate: essentially, a linear relationship
with a positive slope for query completed and a negative
slope for time remaining. For query completed graphs
the correct line starts at 0 of the execution time and
ends at 1. For time remaining this correct line starts
at the time remaining for the actual execution of the
query, and ends at 0.

Most of the predictions fall within a reasonable range,
but there are predictions that are outliers. To avoid in-
troducing inconsistent axis scales, we indicated outliers
in the graphs with red Xs at the top of the graph (see
Figure 2b for an example of this).

The lines on the bottom graph represent timelines,
and there is one for each type of operator detected dur-
ing execution. If there are data points on a particular
line at a given time, that means that the algorithm gen-
erated a progress estimate while executing that kind of
operator at the given time.

Unfortunately, the bottom parts of the graphs do not
represent a perfect picture of the distribution of pro-
cessing time during query execution, but only a rough
guess. For example, since Luo emits estimates for fewer
operator types than Chaudhuri, the bottom parts of the
Luo graphs are significantly less complete than the bot-
tom parts of the Chaudhuri graphs. Also, even Chaud-
huri does not emit estimates during the processing of
blocking operators that do not regularly emit tuples.
Such operators will sometimes appear as gaps in the
bottom graph if they take a significant amount of time
to complete.

For this paper, we have only included those plots di-
rectly referenced in our discussion. We have included
the full set of plots in the appendix document.

5.3 Overhead of Query Progress Estimators
Both of the query progress estimation algorithms add

overhead to the query execution time. Table 1 shows
the query execution times without progress estimation
as well as the relative time with the Luo and Chaudhuri
progress estimators.

The rate of updating the user about the progress of a
query is closely related to the overhead for these estima-
tors. Put simply, more updates cause more overhead.
To find the upper overhead bound, we called print to
emit a progress estimate for each tuple that was pro-
cessed (this incurs the cost of a system call for every
tuple). To find the lower overhead bound, we ran the
algorithms without any user output (noprint).

Ideally, the overhead of the progress estimators would
be minimal, and the relative time should be close to
1. For all of the queries, the print version of Luo and
Chaudhuri takes less than 2 and 3 times the default
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Figure 2: TPC-R 1 with Chaudhuri’s algorithm. An example of the estimated “Query Progress” and “Time Re-
maining” graphs we use to evaluate the accuracy of the estimation algorithms; notice the outliers (denoted as red
Xs) in the time remaining graph.

Query Unmodified Time (s) Chaud (noprint) Luo (noprint) Chaud (print) Luo (print)
1 87 1.126 1.115 1.793 1.494
4 3 0.667 0.667 2.000 1.333
5 23 1.000 0.697 2.608 0.690
6 5 1.000 1.000 1.200 1.000
11 4 1.000 0.75 2.500 0.750
14 5 1.000 1.200 1.600 1.200
19 7 1.000 1.000 1.285 1.142
21 50 1.220 1.000 2.120 1.020

Luo Q1 186 1.096 1.284 1.339 1.360
Luo Q2 208 1.173 1.216 1.514 1.192
Luo Q3 16 1.437 1.250 2.375 1.562

Luo 2005 Q1 61 1.525 1.082 2.524 1.634
Luo 2005 Q2 42 1.238 1.238 1.619 1.167

Table 1: Unmodified and relative query execution times for Luo and Chaudhuri. Highlighted rows indicate large
differences between the execution times.

execution time, respectfully. For the noprint version,
both algorithms take less than 1.6 times the default
execution time.

This is not horrible, but not very compelling, either.
If a query takes twice as long to complete with progress
estimates, is it really worth it? However, our imple-
mentation was not optimized for execution speed, and
we believe this contributed to the poor performance of
these algorithms.

There were a few significant differences between the
relative running times of the noprint version of the esti-
mators. However, the highlighted results in Table 1 in-
dicate that Chaudhuri’s print version is often 2x slower
than Luo’s print version.

5.4 Accuracy of Luo’s Algorithm
Now we evaluate the accuracy of Luo’s query progress

estimates. Based on the mean estimation error (Ta-
ble 2), the estimator had less than 1% mean error on
TPC-R 1, 4, 6, and Luo Q1, Q3 and 2005 Q2. Luo per-
forms well on queries that have a predictable number of
expected work units, and a constant rate of consumed
work units; all of the aforementioned queries have this
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Figure 3: Luo’s Algorithm correctly estimates the
progress of the simple query TPC-R 6.
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Query Max Mean StdDev
1 0.01 0.00 0.00
4 0.13 0.05 0.05
5 0.91 0.34 0.30
6 0.00 0.00 0.00
11 0.43 0.27 0.13
14 0.82 0.32 0.25
19 0.85 0.43 0.25
21 0.98 0.24 0.24

Luo Q1 0.01 0.00 0.00
Luo Q2 0.48 0.22 0.15
Luo Q3 0.23 0.07 0.07

Luo 2005 Q1 0.26 0.14 0.07
Luo 2005 Q2 0.00 0.00 0.00

(a) Luo

Query Max Mean StdDev
1 0.01 0.00 0.00
4 0.14 0.05 0.04
5 0.17 0.13 0.04
6 0.03 0.02 0.01
11 0.40 0.22 0.12
14 0.31 0.10 0.08
19 0.18 0.08 0.05
21 0.00 0.00 0.00

Luo Q1 0.04 0.02 0.01
Luo Q2 0.27 0.13 0.07
Luo Q3 0.27 0.12 0.06

Luo 2005 Q1 0.60 0.28 0.17
Luo 2005 Q2 0.59 0.25 0.16

(b) Chaudhuri

Table 2: Error for estimates of percent completed. Highlighted rows indicate that the estimator performed poorly
(more than 20% error).
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Figure 4: Luo’s algorithm incorrectly estimates the
progress of query TPC-R 21

quality. For example, with only one output operator,
Luo perfectly estimates the percentage of query com-
pleted for TPC-R 6 (Figure 3). This is due to the
query’s simplicity; there is only one sequential scan that
feeds into an a blocking aggregate operator. We obtain
correct linear interpolation of the aggregate’s observed
progress by observing the sequential scan’s progress.
Also, as there is only one blocking operator, the rate
of completed work units is constant. It should be noted
that Luo can also perform well on more complicated
queries, like Luo’s Q3.

The estimator does not perform well on TPC-R 1, 5,
11, 14, 21 and Luo Q2. These queries can be grouped
into several types: 11 and 21 have at least one sub-
query, 14 and 19 prematurely reach 100% completion,
and Q2 does poorly as a result of an inaccurate cost es-
timation of filtered scans (which contradicts the results
from Luo’s paper).

Both queries 11 and 21 are inaccurate (Figure 4) be-
cause the version of Luo’s algorithm that we imple-
mented [5] does not include the explicit support for
subqueries. Luo later added this in [6].

For queries 14 and 19, the database devotes most of
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Figure 5: Our results for Q2 do not match the results
from Luo’s implementation

its time to computing aggregates. While the aggregates
are executing, the estimator reports that the query is
100% complete. A careful examination revealed that
the cause of this behavior is the extra processing that
an aggregate operator performs even after it receives all
of the incoming tuples.

Now we turn our analysis to results that conflict with
[5]. In Luo’s paper, the progress estimate for Luo Q2

is near perfect while our implementation produces less
than perfect results (Figure 5). There are two possi-
ble causes for this inconsistency: 1) our implementa-
tion is flawed or 2) the statistics in the Luo paper are
the result of special optimizations not mentioned in the
paper. Unfortunately, since the implementation used
for the paper is closed-source, we cannot compare their
implementation with ours.

We believe that the algorithm as presented in their
paper can not perform as well as their graph suggests for
the following reason: PostgreSQL’s inaccurate estimate
of filtered scans incorrectly estimates the output size of
the root hash join (§4.3.2). As a result, the estimated
work units are also incorrect. At time 0.1 the estimator
reaches the point where the actual output size overtakes
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the initial estimate of the sequential scan’s output size.
From this point to time 0.7, the incorrect estimates of
the sequential scan are being updated with every new
tuple seen by the database. While this is happening the
progress estimate holds at 0.3. At time 0.7 the errant
sequential scan ends, and the new cost of the hash join
stops being recomputed. Finally the rest of the hash
join results are computed, and the query ends. These
contradictory results make the case for releasing source
code so others can reproduce published results.

Luo’s time remaining estimates are not accurate for
most of the queries. For example, in Figure 6 you can
see even though the progress estimate is very accurate,
the time to completion is consistently underestimated.
We have not determined the cause for the abysmal ac-
curacy of the time to completion.

5.5 Accuracy of Chaudhuri’s Algorithm
The clearest strength of Chaudhuri’s algorithm is man-

ifested in query plans where the execution time is dom-
inated by driver operators (e.g. sequential or index
scans). The queries that clearly have this behavior are
TPC-R 1, 4, 6, and 21, as well as Luo’s Q1. The mean
errors for query progress percentages are 5% or less for
all of these queries, and the query progress graphs (see
Figure 2 for an example) show that the estimates are
very close to the grey dashed line that defines a “per-
fect” estimate. In addition, the time remaining graphs
show that the estimates are roughly correct for signifi-
cant portions of the execution time, although they are
less accurate than the query progress estimates.

The accuracy of Chaudhuri on TPC-R 21 (see Figure
7) is particularly remarkable, given the complexity of
the query. The query includes a large variety of types
of operators, many joins, a subquery, and a final sorted
aggregation. Despite this heterogeneity, the driver op-
erator estimate is close to the correct percentage for the
majority of execution.

In the Chaudhuri results, Q2 from Luo’s paper ex-
hibits another peculiar feature. The query progress
graph for this query (see Figure 8) has an obvious “stair-
case” pattern of short bursts of activity followed by
lengthy periods with no observed progress. This may
be simply due to an oversight in implementation. We
tried to ensure that every location that handled tuples
in sequence were instrumented with progress estimate
samples, but since these sections are spread through-
out the PostgreSQL code we cannot guarantee that we
handled them all.

Assuming that we correctly sample all processed tu-
ples, however, there are two other explanations for the
gaps in these results: 1) heavy disk I/O and 2) aggre-
gate processing periods. The first possibility is that the
system is paging memory or buffering I/O and there is
actually no work being done by the query processing

engine itself. To fix this sort of gap, you would need
to predict the I/O behavior and interpolate results be-
tween checkpoints in the query execution. Chaudhuri
has no such provision. The second possibility is that
some operator is performing aggregate calculations (e.g.
sorts or grouping) that do not process tuples in an eas-
ily discernible per-tuple manner. Chaudhuri does not
provide any means of updating the progress estimate
during such operations.

The overarching problem with Chaudhuri’s algorithm
is that it does not take into account the additional work
that needs to be done in non-driver operators, such
as hash joins, sorts, or aggregations. This results in
progress estimates that remain at a certain percentage
too long, or reach 100% prematurely and spend the rest
of execution time unchanged. This can be seen most
clearly in the results for TPC-R 5, 11, 14, 19, as well as
for most of the queries from Luo’s paper. See Figure 9
for an example of this behavior.

5.6 Comparing the Accuracy of Luo and Chaud-
huri

We used two methods to compare the estimation al-
gorithms: 1) visual inspection of the query progress
graphs, and 2) comparison of error statistics.

5.6.1 Visual Inspection
We performed a visual comparison by observing all

of the graphs (such as those referenced in the previous
section) and comparing how close the lines appear to
be to the dotted lines that represent a “perfect” esti-
mate. If the estimates fit the diagonal very closely, this
is taken as an indication of a “good” estimate, and es-
timates that differ significantly from the diagonal are
understood to be “bad.” This kind of comparison is
inexact, but it functions well enough as a qualitative
evaluation of general trends in algorithmic performance.
However, this comparison is still important because the
progress estimators will eventually be implemented as
progress bars observed by the user. Minor variations
in the estimate will not make a discernible difference in
the behavior of the progress bar.

Both algorithms do well for simple queries composed
primarily of a single sequential scan (e.g. TPC-R 1
and 6, and Luo’s Q1). This is not surprising, since
estimating the percentage completion for such queries
is easy and the algorithms focus on the same operators.
However, the algorithms also both perform well on more
some complex queries like TPC-R 4 and Luo Q3.

Neither of the algorithms are accurate on TPC-R 11,
14, or Luo’s Q2. For TPC-R 14, they both are inac-
curate because of a long-running aggregate operation;
however, Luo sufferers more because of this. On TPC-
R 11, both Luo and Chaudhuri overestimate the query
progress. Chaudhuri is inaccurate on query Luo Q2
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Figure 6: Luo’s estimates of remaining time are inaccurate (Query: Luo 2005 Q2).
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Figure 7: Chaudhuri’s algorithm performs very well for TPC-R 21 despite its complexity.
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Figure 8: The “staircase” pattern in Chaudhuri’s esti-
mates for Luo’s Q2 is an interesting anomaly.
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Figure 9: Chaudhuri does not emit useful updates for
blocking aggregate operators like hashes (Query: TPC-
R Q14).
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because the database exhibits variable rate of incom-
ing sequential scan tuples. Luo behaves poorly on this
query because of inaccurate cost estimation (§4.3.2).

For queries with a deep operator tree (e.g. TPC-R 5
and 21), the graphs for Luo show a wider variation of be-
haviors (curves, lines, gaps, and patterns), and they are
generally further from the ideal than the correspond-
ing Chaudhuri lines. The Chaudhuri query percentage
graphs follow a linear relationship; however, they still
show significant deviation from the ideal for some of the
queries. For TPC-R 19, both algorithms have inaccu-
rate regions, but Chaudhuri performs better since the
query is dominated by a sequential scan.

Luo 2005Q1 andQ2 reveal a weakness in Chaudhuri’s
approach. For these queries the database spends a con-
siderable amount of time working on operators that do
not fit Chaudhuri’s definition of “drivers.” The most
interesting case is the query Luo 2005 Q1 (Figure 10).
When we ran this query with the Chaudhuri algorithm
the results were abysmal, because the execution time is
dominated by a nested loop join. With the Luo imple-
mentation, this nested loop join appears to end much
quicker (indicated by the blocking hash ancestor) and
does not dominate the execution time. Based on these
plots and the query execution time in Table 1, it appears
that the overhead of the progress estimation affects the
accuracy of the progress estimates for Chaudhuri in this
case.

For the time remaining graphs, Chaudhuri’s algo-
rithm again works better in general than Luo’s. This
is probably a simple extension from the better perfor-
mance on query progress; intuitively, the algorithm that
is better able to estimate the query percentage will be
better able to estimate the time remaining.

5.6.2 Error Statistics
We also wanted to perform a more quantitative com-

parison, so we decided to compare statistics relating to
the error of the progress estimates. We define the errors
as follows:

εqpct = |Eqpct −Atime| (1)

εtime = |Etime −Atime| (2)

Where Eqpct is the estimated query percentage com-
plete, Etime is the estimated time remaining (in sec-
onds), and where Aqpct is the actual query percentage
complete and Atime is the actual time remaining (in
seconds).

Since Aqpct and Atime can only be determined af-
ter the query execution has finished, we did not cal-
culate these statistics online. Instead, we logged all
the progress estimates to disk and performed a post-
processing step to calculate errors. We used regular

sampling to extract 1000 εqpct and εtime values evenly
across the execution time, and we report the maximum,
mean average, and standard deviation.

The error statistics for εqpct are included in Table 2
(in the table, all percentages are expressed as a deci-
mal fraction). Unfortunately, the errors for the time
remaining metric are still so high that the statistics for
εtime were virtually meaningless. For this reason, we
have not included them in this paper.

The error for both algorithms were similar on the
queries TPC-R 1, 4, 6, 11, Luo Q1 and Luo Q3. In
general, the average errors for the Chaudhuri estimates
were lower than for the Luo estimates. The exceptions
were Luo’s 2005 Q1 and Q2. For these queries, Luo
performed much better than Chaudhuri. In fact, Luo’s
estimates for the query Luo 2005 Q2 are essentially per-
fect, and the mean error is nearly zero.

The error standard deviations generally reflected the
mean error; high variances accompanied high average
error. In most cases, the maximum error also reflects
average error, although there are exceptions like Chaud-
huri’s estimates for TPC-R Q4 and Q14, where the max
error is around three times the mean error.

6. FUTURE WORK: HYBRID PROGRESS
ESTIMATORS

We have two ideas for improved hybrid progress in-
dicators. Unfortunately, because of time constraints we
did not implement or evaluate these algorithms.

Our first idea is to use Chaudhuri’s algorithm as a
base, layering Luo’s algorithm on top for certain parts
of a query tree. The Chaudhuri algorithm is incapable
of effectively estimating the progress of blocking opera-
tors like hashing and sorting, while Luo does quite well
with these kinds of operators. In addition, there are cer-
tain situations in which Chaudhuri adds an excessive
amount of overhead. Thus, we propose using Chaud-
huri’s algorithm except when the driver of a pipeline
is a blocking operator, at which point we would advo-
cate switching to a Luo-based algorithm to estimate its
progress.

Our second idea is to use Chaudhuri and Luo in par-
allel to capture information about progress both from
inputs and outputs, since both Chaudhuri and Luo both
use similar concepts for concurrent sections of a query
(“segments” and “pipelines”). However, Luo works by
observing progress through a section’s output, while
Chaudhuri works by looking at the progress through a
section’s input. By using Chaudhuri to estimate progress
through the input of a segment and Luo to estimate
progress through the output of the same segment, we
believe we can create a weighted average of the two to
obtain a more accurate overall progress estimate. We
believe that by taking advantage of the similarities be-
tween the two algorithms, we can implement a com-
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Figure 10: The overhead of Chaudhuri’s algorithm causes it to inaccurately estimate the progress of Luo 2005 Q1.

bined algorithm with minimal overhead.

7. CONCLUSION
We have examined, implemented, and compared two

recent algorithms for estimating the progress of a query
in a relational database system. We have evaluated
these algorithms on a standard benchmark, and have
described their differing results. It appears that Luo
works better when blocking operations dominate the
execution time, while Chaudhuri works better when
driver operators dominate the execution time. We have
also proposed ideas for better progress estimators by
combining the current approaches into new hybrid al-
gorithms.
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