Register Allocation

Source code Tokens Syntax tree Checked AST

+ Symtables
CEEE o
= &8, = = -
Oo0ooo
ooo
Lexing Parsing Analysis
(P2) (P3) (P4)
Checked AST i
+ Symtables Linear IR cl)ﬁ]tgglrzﬁ:\fl Machine code
i
o am = (B @ [we] o [EH]
IR Code Gen Optimization Machine

(P5) Passes Code Gen

ll optimization (ch. 8-10)

Local

— Local value numbering (8.4.1)
— Tree-height balancing (8.4.2)

Regional

— Superlocal value numbering (8.5.1)
— Loop unrolling (8.5.2)

Global
— Constant propagation (9.3.6, 10.7.1)

— Dead code elimination (10.2)
— Global code placement (8.6.2)
— Lazy code motion (10.3)

Whole-program

_ o Asides:
— Inline substitution (8.7.1) Data-flow analysis (Ch. 9)
— Procedure placement (8.7.2) Liveness analysis (8.5.1, 9.2.2)

Single static assignment (9.3)

I Machine Code Gen (Ch. 11-13)

e Translate from linear IR to machine code

— Often, we can just emit assembly
— Use bullt-in system assembler and linker to create final executable

e |Ssues:

— Translation from IR instructions to machine code instructions:
instruction selection (Ch. 11)

- Arrangement of machine code instructions for optimal hardware
pipelining: instruction scheduling (Ch. 12)

— Assignment of registers to minimize memory and HDD accesses:
register allocation (Ch. 13)

I Instruction Selection

 Choose machine code instructions to replace IR
Instructions

— Complexity is highly dependent on target architecture
— CISC provides more options than RISC

e Algorithms
- "Treewalk" routine (similar to P5)

— Tree-pattern matching / tiling
— Peephole optimization

I Peephole Optimization

e Scan linear IR with sliding window ("peephole")

— Look for common inefficient patterns
— Replace with known equivalent sequences

Example:
storeAI r5 => [bp+8] ‘ storeAl r5 => [bp+8]
loadAI [bp+8] => r7 121 r5 => r7

Generalized pattern:

storeAIl a => b ‘ storeAI a => b
loadAI b => c 121 a =>c¢

I Instruction Scheduling

 Modern architectures expose many opportunities for optimization

— Some instructions require fewer cycles
— Instruction pipelining

— Speculative execution

— Multicore shared-memory processors

e Scheduling: re-order instructions to improve speed without
changing results

— Must not modify program semantics
— May re-order other statements to maximize utilization
— Main algorithm: list scheduling

I Register Allocation

 Maximizing register use Is very important
- Lowest-latency memory locations
— Issue: limited number of them

— Need to reduce the number of registers used by a program to match
the target system

— Program using n registers => Program using m registers (n > m)
e Allocation vs. assignment
— Allocation: map a virtual address space to a physical address space
e This is hard (NP-complete for any realistic situation)

— Assignment: map a valid allocation to actual register names
e This is easy (linear or polynomial)

I ocal Allocation

* Top-down local register allocation

— Compute a priority for each virtual register
* Frequency of access to that register
— Sort by priority, highest to lowest

— Assign registers in order, highest priority first
— Rewrite the code

e General iIdea: most-used virtual registers should be stored
In physical registers
— Very simple
— Static per-block allocations are not always optimal
* Access patterns may change throughout block

I ocal Allocation

* Bottom-up local register allocation

— Scan instruction-by-instruction
— For each instruction:

 Ensure operands are in registers
e Allocate register for result

- May need to "spill" registers

e Save their values to the stack temporarily

THIS IS YOUR LAST DECAF PROJECT

I Global Allocation

e Track "live range" for each virtual register

— Use results from liveness analysis
e Build interference graph

— Node for each virtual register

— Edges between registers with interfering live ranges

o Attempt to compute graph k-coloring

k is the number of physical registers
Top-down and bottom-up differ in coloring order
If successful, done!

If not successful, spill some values and try again

 Need a robust way to pick which values to spill
o Alternatively, split live ranges at carefully-chosen points

i1
oo
<
I
\l

<

{4,6}

X=

T M M M
~

LRl:

ll
- ~
- ~
~

\d -~

Z =X +y

O o

X >

\\\\\\
|||

s E s s s s EEE s RS E s EE RS EEEE SRS SR SRS EE e eSS S S eSS SRS EE S eSS e -

y

P L L L T

||
- ~
e e

lllllllllllllll

Z =X +y

P L L A CLLLLLLLLL LT

~

lllllllllllllll

~
~
s E s s s s EEE s RS E s EE RS EEEE SRS SR SRS EE e eSS S S eSS SRS EE S eSS e -

\\\\\
lll

P L L L T
~

T

{4,6}

X=

LRl:

||
- ~
e e

y=10

lllllllllllllll

Z =X +Yy

P L L A CLLLLLLLLL LT

~

lllllllllllllll

~. Py
llllllllllllllllllllllllllllllll

\\\\\
lll

~
~
s E s s s s EEE s RS E s EE RS EEEE SRS SR SRS EE e eSS S S eSS SRS EE S eSS e -

S

P L L L T
~

T

{4,6}

X=

LRl:

||
- ~
e e

y=10

lllllllllllllll

lllllllllllllll

-y,

A CLLLLLLLLL LT

NesmsmssmE .-

~
R R R R R R R R R R R R R R R R R R R

EELLLL L L L LT PO

llllllllllll
R

-

e s s s s

-

lllllllllllllllllll
~

Z =X +Yy

'.

o e R

Y
[Y -

\\\\\
lll

y
Z

-
lllllllllllllllll

S
~
Ly —

||
- ~
e e

-
R

10

-y,

y

e s s s s

lllllllllllllll
.

lllllllllllllll

EELLLL L L L LT PO
-

A CLLLLLLLLL LT

Z =X +y

e

T
NesmsmssmE .-

~

llllllllllllllllllllllllllllll

'.

e -

-
lllllllllllllllllll

{4,6}

X=
4

LRl:
Yy

P L L L T
~

X
y
LR, :

'4
LR,:

4

‘5

§~~

\\\\\
lll

N P

~

—----------------‘

5

= 10

'----

y={5,7}

‘-------

5

<

aemmmm»

- ..

‘--..

.27 LR: x={4,6}

‘--------

L 4

X +Yy

L 4
24
2 4

--------~

1

'----

‘----

w

z

g

.----------------'

~------------------’

LRy: W=z+1

]]
]]
LI |

| 4

—
A

.’
-’

-------.

Y4

..------------_

.--------'

- mmm
~

r---------’

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

