

CS 480
Fall 2015

Mike Lam, Professor

Register Allocation

Compilers

int main() {
 int x
 = 4 + 5;
 return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
 loadI 4 => r1
 loadI 5 => r2
 add r1, r2 => r3
 i2i r3 => RET

Linear IR

main:
 loadI 4 => r1
 addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Optimization (Ch. 8-10)

● Local

– Local value numbering (8.4.1)

– Tree-height balancing (8.4.2)

● Regional

– Superlocal value numbering (8.5.1)

– Loop unrolling (8.5.2)

● Global

– Constant propagation (9.3.6, 10.7.1)

– Dead code elimination (10.2)

– Global code placement (8.6.2)

– Lazy code motion (10.3)

● Whole-program

– Inline substitution (8.7.1)

– Procedure placement (8.7.2)

Asides:
Data-flow analysis (Ch. 9)
Liveness analysis (8.5.1, 9.2.2)
Single static assignment (9.3)

Machine Code Gen (Ch. 11-13)

● Translate from linear IR to machine code

– Often, we can just emit assembly

– Use built-in system assembler and linker to create final executable

● Issues:

– Translation from IR instructions to machine code instructions:
instruction selection (Ch. 11)

– Arrangement of machine code instructions for optimal hardware
pipelining: instruction scheduling (Ch. 12)

– Assignment of registers to minimize memory and HDD accesses:
register allocation (Ch. 13)

Instruction Selection

● Choose machine code instructions to replace IR
instructions

– Complexity is highly dependent on target architecture

– CISC provides more options than RISC

● Algorithms

– "Treewalk" routine (similar to P5)

– Tree-pattern matching / tiling

– Peephole optimization

Peephole Optimization

● Scan linear IR with sliding window ("peephole")

– Look for common inefficient patterns

– Replace with known equivalent sequences

storeAI r5 => [bp+8]
loadAI [bp+8] => r7

storeAI r5 => [bp+8]
i2i r5 => r7

storeAI a => b
loadAI b => c

storeAI a => b
i2i a => c

Example:

Generalized pattern:

Instruction Scheduling

● Modern architectures expose many opportunities for optimization

– Some instructions require fewer cycles

– Instruction pipelining

– Speculative execution

– Multicore shared-memory processors

● Scheduling: re-order instructions to improve speed without
changing results

– Must not modify program semantics

– May re-order other statements to maximize utilization

– Main algorithm: list scheduling

Register Allocation

● Maximizing register use is very important

– Lowest-latency memory locations

– Issue: limited number of them

– Need to reduce the number of registers used by a program to match
the target system

– Program using n registers => Program using m registers (n > m)

● Allocation vs. assignment

– Allocation: map a virtual address space to a physical address space
● This is hard (NP-complete for any realistic situation)

– Assignment: map a valid allocation to actual register names
● This is easy (linear or polynomial)

Local Allocation

● Top-down local register allocation

– Compute a priority for each virtual register
● Frequency of access to that register

– Sort by priority, highest to lowest

– Assign registers in order, highest priority first

– Rewrite the code

● General idea: most-used virtual registers should be stored
in physical registers

– Very simple

– Static per-block allocations are not always optimal
● Access patterns may change throughout block

Local Allocation

● Bottom-up local register allocation

– Scan instruction-by-instruction

– For each instruction:
● Ensure operands are in registers
● Allocate register for result

– May need to "spill" registers
● Save their values to the stack temporarily

THIS IS YOUR LAST DECAF PROJECT

Global Allocation

● Track "live range" for each virtual register

– Use results from liveness analysis

● Build interference graph

– Node for each virtual register

– Edges between registers with interfering live ranges

● Attempt to compute graph k-coloring

– k is the number of physical registers

– Top-down and bottom-up differ in coloring order

– If successful, done!

– If not successful, spill some values and try again
● Need a robust way to pick which values to spill
● Alternatively, split live ranges at carefully-chosen points

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR1

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
2
: y=10

LR1 LR2

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR1 LR2

LR3

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR1 LR2

LR3 LR4

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR
5

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR
5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

