

CS 480
Fall 2015

Mike Lam, Professor

Data-Flow Analysis

Optimization is Hard

● Problem: it's hard to analyze code and make guarantees
about all possible executions

– Inputs differ

– Consider this code:
 int *p; cin >> p; *p = 42;

● Optimization tradeoff: work vs. speedup

– "Better than naïve" is fairly easy

– "Optimal" is impossible

– Real world: somewhere in between
● Better speedups with more static analysis
● Usually worth the added compile time

Control-Flow Graphs

● Linear IRs (e.g., ILOC) don't easily expose control flow

– This makes analysis and optimization difficult

● Basic blocks

– "Maximal-length sequence of branch-free code"

– "Atomic" code sequences

– Instructions that always execute together

● Control-flow graph (CFG)

– Nodes/vertices for basic blocks

– Edges for control transfer
● Branches (explicit) or fallthrough (implicit)

Control-Flow Graphs

● Conversion: linear IR to CFG

– Find leaders (initial instruction of a basic block) and build blocks

– Add edges between blocks based on branches and fallthrough

– Complicated by jump-to-address instructions

 loadAI [bp-4] => r1
 cbr r1 => l1, l2
l1:
 loadI 5 => r2
 jump l3
l2:
 loadI 10 => r2
l3:
 storeAI r2 => [bp-4]

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2 loadI 10 => r2

storeAI r2 => [bp-4]

Static CFG Analysis

● Single block analysis is easy

● Trees are also relatively easy

● General CFGs, not so much

– Which branch of a conditional will execute?

– How many times will a loop execute?

● How do we handle this?

– One method: iterative data-flow analysis

Data-Flow Analysis

● Define properties of interest on basic blocks

● Define formula describing how those properties change within a
basic block

● Run an iterative update algorithm until the properties converge for
all basic blocks

● Types of data-flow analysis

– Dominance

– Liveness

– Available expressions

– Reaching definitions

– Anticipable expressions

Dominance

● Block A dominates block B if A lies on every
path from the entry block to B

– Conversely, B postdominates block A if B lies on
every path from A to any exit

DOM (n)={n}∪(m∈preds(n)
∩

DOM (m))

Liveness

● Variable v is live at point p if there is a path from
p to a use of v with no intervening assignment
to v

LIVEOUT (n)=m∈succs(n)
∪

(UEVAR(m)∪(LIVEOUT (m)∩VARKILL(m)))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

