

CS 480
Fall 2015

Mike Lam, Professor

Runtime Environments
(a.k.a. procedure calls and heap management)

Subprograms

● General characteristics

– Single entry point

– Caller is suspended while subprogram is executing

– Control returns to caller when subprogram completes

● Procedure vs. function

– Functions have return values

Subprograms

● New-ish terms

– Header: signaling syntax for defining a subprogram

– Parameter profile: number, types, and order of parameters

– Signature/protocol: parameter types and return type(s)

– Prototype: declaration without a full definition

– Referencing environment: variables visible inside a subprogram

– Name space / scope: set of visible names

– Call site: location of a subprogram invocation

– Return address: destination in caller after call completes

Parameters

● Formal vs. actual parameters

– Formal: parameter inside subprogram definition

– Actual: parameter at call site

● Semantic models: in, out, in-out

● Implementations (key differences are when values are copied
and exactly what is being copied)

– Pass-by-value (in, value)

– Pass-by-result (out, value)

– Pass-by-copy (in-out, value)

– Pass-by-reference (in-out, reference)

– Pass-by-name (in-out, name)

Parameters

● Pass-by-value

– Pro: simple

– Con: costs of allocation and copying

– Often the default

● Pass-by-reference

– Pro: efficient (only copy 32/64 bits)

– Con: hard to reason about, extra layer of indirection, aliasing issues

– Often used in object-oriented languages

● Pass-by-name

– Pro: powerful

– Con: expensive to implement, very difficult to reason about

– Rarely used!

Other Design Issues

● How are name spaces defined?

– Lexical vs. dynamic scope

● How are formal/actual parameters associated?

– Positionally, by name, or both?

● Are parameter default values allowed?

● Are method parameters type-checked?

– Statically or dynamically?

Other Design Issues

● Are local variables statically or dynamically allocated?

● Can subprograms be passed as parameters?

– How is this implemented?

– Shallow/dynamic, deep/static, or ad-hoc referencing
environment?

● Can subprograms be nested?

● Can subprograms be polymorphic?

– Ad-hoc/manual, subtype, or parametric/generic?

● Are function side effects allowed?

● Can a function return multiple values?

Misc. Topics

● Macros

– Call-by-name, “executed” at compile time

● Closures

– A subprogram and its referencing environment

● Coroutines

– Co-operating procedures

● Just-in-time (JIT) compilation

– Defer compilation of each function until it is called

Subprogram Activation

● Call semantics:

– Save caller status

– Compute and save parameters

– Save return address

– Transfer control to callee

● Return semantics:

– Save return value(s) and out parameters

– Restore caller status

– Transfer control back to the caller

● Activation record: data for a single subprogram execution

– Local variables

– Parameters

– Return address

– Dynamic link

Linkage contract
(caller and callee must
agree)

Standard Linkages

● Caller and callee must agree

● Standard contract:

– Caller: precall sequence
● Evaluate and push parameters
● Save return address
● Transfer control to callee

– Callee: prologue sequence
● Save & initialize base pointer
● Allocate space for local variables

– Callee: epilogue sequence
● De-allocate activation record
● Transfer control back to caller

– Caller: postreturn sequence
● Clean up parameters

Prologue

Precall

Postreturn

Epilogue

Prologue

Epilogue

Caller

Callee

x86 Stack Layout

● Address space

– Code, static, stack, heap

● Instruction Pointer (IP)

– Current instruction

● Stack pointer (SP)

– Top of stack

● Base pointer (BP)

– Start of current frame

● "cdecl" calling conventions

– callee must preserve bx, bp, sp, si (save/restore if used)

– callee may use ax, cx, dx, flags, st0-7, mm0-7, xmm0-15

– parameters may be passed in di, si, dx, cx, r8-15, etc.

– return value saved in ax

– function stack frame starting at base pointer (bp)

x86 Calling Conventions
Prologue:
 push %ebp ; save old base pointer
 mov %esp, %ebp ; save top of stack as base pointer
 sub X, %esp ; reserve X bytes for local vars

Within function:
 +OFFSET(%ebp) ; function parameter
 -OFFSET(%ebp) ; local variable

Epilogue:
 <optional: save return value in %eax>
 leave ; mov %ebp, %esp
 ; pop %ebp
 ret ; pop stack and jump to popped address

Function calling:
 <push parameters> ; precall
 <push return address>
 <jump to fname> ; call
 <pop parameters> ; postreturn

x86_64 "red zone" (128 bytes reserved below SP)
 - optimization: do not explicitly build frame (no SP manipulation)

Decaf Calling Conventions

● param instruction to pass parameters

– Pushed on system stack

– Accessible in function using [bp+offset]

– No need to manually pop after call

● call instruction to transfer control

– Save return address on stack

– Set up stack frame (BP and SP)

– Set IP to function entry point

● return instruction to return to caller

– Tear down stack frame (BP and SP)

– Set IP to return address

– Return value saved in "ret" special register

Heap Management

● Desired properties

– Space efficiency

– Exploitation of locality (time and space)

– Low overhead

● Allocation (malloc/new)

– First-fit vs. best-fit vs. next-fit

– Coalescing free space (defragmentation)

● Manual deallocation (free/delete)

– Dangling pointers

– Memory leaks

Automatic De-allocation

● Criteria: overhead, pause time, space usage, locality impact

● Basic problem: finding reachable structures

– Root set: static and stack pointers

– Follow pointers through heap structures

● Reference counting

– Catch the transition to unreachable

– Has trouble with cyclic data structures

● Mark and sweep (tracing)

– Occasionally pause and detect reachable

– High overhead and undesirable "pause the world" semantics

– Incremental collection: interleave computation and collection

– Partial collection: collect only a subset of memory on each run

– Generational collection: collect newer objects more often

– Collection can be parallelized to a certain extent

Object-Oriented Languages

● Classes vs. objects

● Inheritance relationships (subclass/superclass)

– Single vs. multiple inheritance

● Closed vs. open class structure

● Visibility: public vs. private vs. protected

● Static vs. dynamic dispatch

● Object-records and virtual method tables

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

