Code Generation

Source code

=)

Lexing

~
"Front end"

"Back end"

Code Generation
& Optimization

~
——————
......
- -

Current
focus

I Our Project

e Current status: type-checked AST
 Next step: convert to ILOC

— This step is called code generation
— Convert from a tree-based IR to a linear IR

e (or directly to machine code)
e Use atree traversal to “linearize” the program

e But first, more general code gen topics

I Goals

e Code generator outputs

— Stack code (push a, push b, multiply, pop c)

— Three-address code (c = a + b)

— Machine code (1oad seax, [a]; addq $eax, [b]; store [c], $eax)
 Code generator requirements

— Must preserve semantics

— Should produce efficient code
— Should run efficiently

I Obstacles

e Generating the most optimal code Is undecidable

- Unlike front-end transformations
e (e.g., lexing & parsing)
— Must use heuristics and approximation algorithms

— This Is why most compilers research since 1960s has
been on the back end

I Phases

e |nstruction selection

— Map IR to target instructions

— Difficulty is directly related to uniformity and completeness of
target instruction set

* Register allocation/assighment
— Allocation: selecting which variables to store in registers
— Assignment: selecting which register to use for each variable
— General problem is NP-complete

* Instruction scheduling

— Optimize for pipelined architectures w/ caching
— Take advantage of speculative execution

I Syntax-Directed Translation

e Similar to attribute grammars (Figure 4.15)
* Associate bits of code with each production

— This code performs the translation or code gen
* |In our project, we will use a visitor

— Newer, cleaner technology than SDT
— Not dependent on original grammar

o SDT is still interesting from an historical perspective

— And useful for smaller projects

I ILOC

e Linear IR based on research compiler from Rice
e See Appendix A (and ILOCInstruction.java)
e | have made some modifications

- Removed most immediate instructions (i.e., subI)

— Removed binary shift instructions

— Removed character-based instructions

- Removed jump tables

- Removed comparison-based conditional jumps

— Added labels and function call mechanisms (call, param, return)
— Added symbol address referencing (1oadS)

— Added binary not and arithmetic neg

— Added print and nop instructions

I SSA Form

e Static single-assignment

— Naming convention that uses a unique name for each
newly-calculated value

— Values are collapsed at control flow points using ®-
functions
e (not actual executed!)

— Useful for various types of analysis

I Assigning Storage Locations

foo(): bar(x): baz(x, y):
. int a,b int c int d
* Memory regions ON SR
11} |1
— Code ("text") e
~ addresses "

— Static ("data") actvation

record < main return IP

f
— Heap (frame) main BP il foo

foo local a

- StaCk foo foo local b H:".:

activation bar param x
. record
® REQISterS (frame) foo return IP)
foo BPr bar
— General bar local c N, BP
. bar baz param X ;
— activation
SpeC|a| record baz param y .
(frame) bar return IP F
baz bar BP ""- baz
activation baz local d BP
record
(frame)

stack
growth

I Boolean Encoding

* Integers: O for false, 1 for true
» Difference from book

— No comparison-based conditional branches
e Short-circuiting

— Not In Decalf!

I Array Accesses

e Generalization to multidimensions:

- base + (i1 * w_1) + (i_2 * w.2) + ... + (i_k * w_k)
e Alternate definition:

— 1d: base + width * (i_1)

— 2d: base + width * (i_1 * n_2 + i_2)

— NA: base + width * ((... ((i1*n2+12) *n3+13) ...) * nk+ik) * width

 Row-major vs. column-major

 Arrays of chars vs. encapsulated type

— Former Is faster, latter i1s safer

I Struct and Record Types

e How to access member values?
e OO adds a whole new level of complexity

— Class instance records and virtual method tables

I Control Flow

* Introduce program labels

— Named location in the program

— Generated sequentially using static newlabel() call
* (Generate goto instructions using templates

— Also called "jumps" or "branches"
— Templates are composable

If statement: if (E) B1

<< E code >>
if E goto 11
goto 12
11:
<< B1l code >>
12:

If statement: if (E) B1 else B2

<< E code >>
if E goto 11
goto 12
11:
<< B1 code >>
goto 13
12:
<< B2 code >>
13:

while loop: while (E) B

11:
<< E code >>
if E goto 12
goto 13

12:
<< B code >>
goto 11

13:

14

14

CONTINUE target

BREAK target

for loop: forVInE1,E2B

11:

12:

<< E1 code >>
<< E2 code >>
V = E1

tl1 =V >= E2
if tl1 goto 12
<< B code >>
V=V+1
goto 11

NOT CURRENTLY
IN DECAF

; CONTINUE target

4

© BREAK target

switch statement:

switch (E) {
case V1l: Bl
case V2: B2
default: BD
}

<< E code >>
if E == v1 goto 11
if E == V2 goto 12
<< BD code >>
goto 13
11:
<< B1 code >>
goto 13
12:
<< B2 code >>
goto 13
13:

NOT CURRENTLY
IN DECAF

For sequential values starting with constant (C):

("jump table")

<< E code >>
goto jt(E-C)

jt: goto 11
goto 12
(...)

(can also use raw instruction addresses and pointer arithmetic)

e These are hard!

— We'll talk about them next week

